diff options
Diffstat (limited to 'Functor/Monoidal/Instance/Nat/Pull.agda')
| -rw-r--r-- | Functor/Monoidal/Instance/Nat/Pull.agda | 166 |
1 files changed, 0 insertions, 166 deletions
diff --git a/Functor/Monoidal/Instance/Nat/Pull.agda b/Functor/Monoidal/Instance/Nat/Pull.agda deleted file mode 100644 index b267f97..0000000 --- a/Functor/Monoidal/Instance/Nat/Pull.agda +++ /dev/null @@ -1,166 +0,0 @@ -{-# OPTIONS --without-K --safe #-} - -module Functor.Monoidal.Instance.Nat.Pull where - -import Categories.Morphism as Morphism - -open import Level using (0ℓ; Level) - -open import Category.Instance.Setoids.SymmetricMonoidal {0ℓ} {0ℓ} using (Setoids-×) -open import Category.Monoidal.Instance.Nat using (Natop,+,0; Natop-Cartesian) - -open import Categories.Category.BinaryProducts using (module BinaryProducts) -open import Categories.Category.Cartesian using (Cartesian) -open import Categories.Category.Cocartesian using (Cocartesian; BinaryCoproducts) -open import Categories.Category.Instance.Nat using (Nat) -open import Categories.Category.Instance.Nat using (Nat-Cocartesian) -open import Data.Setoid.Unit using (⊤ₛ) -open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory) -open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian) -open import Categories.Category.Product using (_⁂_) -open import Categories.Functor using (_∘F_) -open import Categories.Functor.Monoidal.Symmetric Natop,+,0 Setoids-× using (module Strong) -open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) -open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; niHelper) -open import Data.Circuit.Value using (Monoid) -open import Data.Vector using (++-assoc) -open import Data.Fin.Base using (Fin; splitAt; join) -open import Data.Fin.Permutation using (Permutation; _⟨$⟩ʳ_; _⟨$⟩ˡ_) -open import Data.Fin.Preimage using (preimage) -open import Data.Fin.Properties using (splitAt-join; splitAt-↑ˡ; splitAt-↑ʳ; join-splitAt) -open import Data.Nat.Base using (ℕ; _+_) -open import Data.Product.Base using (_,_; _×_; Σ; proj₁; proj₂) -open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_) -open import Data.Setoid using (∣_∣) -open import Data.Subset.Functional using (Subset) -open import Data.Sum.Base using ([_,_]′; map; map₁; map₂; inj₁; inj₂) -open import Data.Sum.Properties using ([,]-map; [,]-cong; [-,]-cong; [,-]-cong; [,]-∘) -open import Data.System.Values Monoid using (Values; <ε>; []-unique; _++_; ++ₛ; splitₛ; _≋_; []) -open import Data.Unit.Polymorphic using (tt) -open import Function using (Func; _⟶ₛ_; _⟨$⟩_; _∘_) -open import Function.Construct.Constant using () renaming (function to Const) -open import Functor.Instance.Nat.Pull using (Pull; Pull-defs) -open import Relation.Binary using (Setoid) -open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_; module ≡-Reasoning) - -open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using (products) - -open BinaryProducts products using (-×-) -open Cocartesian Nat-Cocartesian using (module Dual; _+₁_; +-assocʳ; +-comm; +-swap; +₁∘+-swap; i₁; i₂) -open Dual.op-binaryProducts using () renaming (-×- to -+-; assocˡ∘⟨⟩ to []∘assocʳ; swap∘⟨⟩ to []∘swap) -open Func -open Morphism (Setoids-×.U) using (_≅_; module Iso) -open Strong using (SymmetricMonoidalFunctor) -open ≡-Reasoning - -private - - open _≅_ - open Iso - - Pull-ε : ⊤ₛ ≅ Values 0 - from Pull-ε = Const ⊤ₛ (Values 0) [] - to Pull-ε = Const (Values 0) ⊤ₛ tt - isoˡ (iso Pull-ε) = tt - isoʳ (iso Pull-ε) {x} = []-unique [] x - - opaque - unfolding _++_ - unfolding Pull-defs - Pull-++ - : {n n′ m m′ : ℕ} - (f : Fin n → Fin n′) - (g : Fin m → Fin m′) - {xs : ∣ Values n′ ∣} - {ys : ∣ Values m′ ∣} - → (Pull.₁ f ⟨$⟩ xs) ++ (Pull.₁ g ⟨$⟩ ys) ≋ Pull.₁ (f +₁ g) ⟨$⟩ (xs ++ ys) - Pull-++ {n} {n′} {m} {m′} f g {xs} {ys} e = begin - (xs ∘ f ++ ys ∘ g) e ≡⟨ [,]-map (splitAt n e) ⟨ - [ xs , ys ]′ (map f g (splitAt n e)) ≡⟨ ≡.cong [ xs , ys ]′ (splitAt-join n′ m′ (map f g (splitAt n e))) ⟨ - (xs ++ ys) (join n′ m′ (map f g (splitAt n e))) ≡⟨ ≡.cong (xs ++ ys) ([,]-map (splitAt n e)) ⟩ - (xs ++ ys) ((f +₁ g) e) ∎ - - module _ {n m : ℕ} where - - opaque - unfolding splitₛ - - open import Function.Construct.Setoid using (setoid) - open module ⇒ₛ {A} {B} = Setoid (setoid {0ℓ} {0ℓ} {0ℓ} {0ℓ} A B) using (_≈_) - open import Function.Construct.Setoid using (_∙_) - open import Function.Construct.Identity using () renaming (function to Id) - - split∘++ : splitₛ ∙ ++ₛ ≈ Id (Values n ×ₛ Values m) - split∘++ {xs , ys} .proj₁ i = ≡.cong [ xs , ys ]′ (splitAt-↑ˡ n i m) - split∘++ {xs , ys} .proj₂ i = ≡.cong [ xs , ys ]′ (splitAt-↑ʳ n m i) - - ++∘split : ++ₛ {n} ∙ splitₛ ≈ Id (Values (n + m)) - ++∘split {x} i = ≡.trans (≡.sym ([,]-∘ x (splitAt n i))) (≡.cong x (join-splitAt n m i)) - - ⊗-homomorphism : NaturalIsomorphism (-×- ∘F (Pull ⁂ Pull)) (Pull ∘F -+-) - ⊗-homomorphism = niHelper record - { η = λ (n , m) → ++ₛ {n} {m} - ; η⁻¹ = λ (n , m) → splitₛ {n} {m} - ; commute = λ { {n , m} {n′ , m′} (f , g) {xs , ys} → Pull-++ f g } - ; iso = λ (n , m) → record - { isoˡ = split∘++ - ; isoʳ = ++∘split - } - } - - module _ {n m : ℕ} where - - opaque - unfolding Pull-++ - - Pull-i₁ - : (X : ∣ Values n ∣) - (Y : ∣ Values m ∣) - → Pull.₁ i₁ ⟨$⟩ (X ++ Y) ≋ X - Pull-i₁ X Y i = ≡.cong [ X , Y ]′ (splitAt-↑ˡ n i m) - - Pull-i₂ - : (X : ∣ Values n ∣) - (Y : ∣ Values m ∣) - → Pull.₁ i₂ ⟨$⟩ (X ++ Y) ≋ Y - Pull-i₂ X Y i = ≡.cong [ X , Y ]′ (splitAt-↑ʳ n m i) - - opaque - unfolding Pull-++ - - Push-assoc - : {m n o : ℕ} - (X : ∣ Values m ∣) - (Y : ∣ Values n ∣) - (Z : ∣ Values o ∣) - → Pull.₁ (+-assocʳ {m} {n} {o}) ⟨$⟩ ((X ++ Y) ++ Z) ≋ X ++ (Y ++ Z) - Push-assoc {m} {n} {o} X Y Z i = ++-assoc X Y Z i - - Pull-swap - : {n m : ℕ} - (X : ∣ Values n ∣) - (Y : ∣ Values m ∣) - → Pull.₁ (+-swap {n}) ⟨$⟩ (X ++ Y) ≋ Y ++ X - Pull-swap {n} {m} X Y i = begin - ((X ++ Y) ∘ +-swap {n}) i ≡⟨ [,]-∘ (X ++ Y) (splitAt m i) ⟩ - [ (X ++ Y) ∘ i₂ , (X ++ Y) ∘ i₁ ]′ (splitAt m i) ≡⟨ [-,]-cong (Pull-i₂ X Y) (splitAt m i) ⟩ - [ Y , (X ++ Y) ∘ i₁ ]′ (splitAt m i) ≡⟨ [,-]-cong (Pull-i₁ X Y) (splitAt m i) ⟩ - [ Y , X ]′ (splitAt m i) ≡⟨⟩ - (Y ++ X) i ∎ - -open SymmetricMonoidalFunctor - -Pull,++,[] : SymmetricMonoidalFunctor -Pull,++,[] .F = Pull -Pull,++,[] .isBraidedMonoidal = record - { isStrongMonoidal = record - { ε = Pull-ε - ; ⊗-homo = ⊗-homomorphism - ; associativity = λ { {_} {_} {_} {(X , Y) , Z} → Push-assoc X Y Z } - ; unitaryˡ = λ { {n} {_ , X} → Pull-i₂ {0} {n} [] X } - ; unitaryʳ = λ { {n} {X , _} → Pull-i₁ {n} {0} X [] } - } - ; braiding-compat = λ { {n} {m} {X , Y} → Pull-swap X Y } - } - -module Pull,++,[] = SymmetricMonoidalFunctor Pull,++,[] |
