diff options
Diffstat (limited to 'Functor/Monoidal/Instance/Nat/Pull.agda')
| -rw-r--r-- | Functor/Monoidal/Instance/Nat/Pull.agda | 290 |
1 files changed, 133 insertions, 157 deletions
diff --git a/Functor/Monoidal/Instance/Nat/Pull.agda b/Functor/Monoidal/Instance/Nat/Pull.agda index c2b6958..1d3d338 100644 --- a/Functor/Monoidal/Instance/Nat/Pull.agda +++ b/Functor/Monoidal/Instance/Nat/Pull.agda @@ -2,191 +2,167 @@ module Functor.Monoidal.Instance.Nat.Pull where +import Categories.Morphism as Morphism + +open import Level using (0ℓ; Level) + +open import Category.Instance.Setoids.SymmetricMonoidal {0ℓ} {0ℓ} using (Setoids-×) open import Category.Monoidal.Instance.Nat using (Natop,+,0; Natop-Cartesian) -open import Categories.Category.Instance.Nat using (Nat-Cocartesian) -open import Categories.Category.Instance.SingletonSet using (SingletonSetoid) -open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) -open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; niHelper) -open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian) + open import Categories.Category.BinaryProducts using (module BinaryProducts) open import Categories.Category.Cartesian using (Cartesian) open import Categories.Category.Cocartesian using (Cocartesian; BinaryCoproducts) +open import Categories.Category.Instance.Nat using (Nat) +open import Categories.Category.Instance.Nat using (Nat-Cocartesian) +open import Categories.Category.Instance.SingletonSet using () renaming (SingletonSetoid to ⊤ₛ) +open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory) +open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian) open import Categories.Category.Product using (_⁂_) open import Categories.Functor using (_∘F_) -open import Data.Subset.Functional using (Subset) -open import Data.Nat.Base using (ℕ; _+_) -open import Relation.Binary using (Setoid) -open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_) -open import Data.Product.Base using (_,_; _×_; Σ) -open import Data.Vec.Functional using ([]; _++_) -open import Data.Vec.Functional.Properties using (++-cong) -open import Data.Vec.Functional using (Vector; []) -open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_) -open import Functor.Instance.Nat.Pull using (Pull; Pull₁) -open import Level using (0ℓ; Level) - +open import Categories.Functor.Monoidal.Symmetric Natop,+,0 Setoids-× using (module Strong) +open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) +open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; niHelper) +open import Data.Circuit.Value using (Monoid) +open import Data.Vector using (++-assoc) +open import Data.Fin.Base using (Fin; splitAt; join) open import Data.Fin.Permutation using (Permutation; _⟨$⟩ʳ_; _⟨$⟩ˡ_) -open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using (products) -open BinaryProducts products using (-×-) -open Cocartesian Nat-Cocartesian using (module Dual; _+₁_; +-assocʳ; +-comm; +-swap; +₁∘+-swap; i₁; i₂) -open Dual.op-binaryProducts using () renaming (-×- to -+-; assocˡ∘⟨⟩ to []∘assocʳ; swap∘⟨⟩ to []∘swap) - -open import Data.Fin.Base using (Fin; splitAt; join; _↑ˡ_; _↑ʳ_) +open import Data.Fin.Preimage using (preimage) open import Data.Fin.Properties using (splitAt-join; splitAt-↑ˡ; splitAt-↑ʳ; join-splitAt) +open import Data.Nat.Base using (ℕ; _+_) +open import Data.Product.Base using (_,_; _×_; Σ; proj₁; proj₂) +open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_) +open import Data.Setoid using (∣_∣) +open import Data.Subset.Functional using (Subset) open import Data.Sum.Base using ([_,_]′; map; map₁; map₂; inj₁; inj₂) open import Data.Sum.Properties using ([,]-map; [,]-cong; [-,]-cong; [,-]-cong; [,]-∘) -open import Data.Fin.Preimage using (preimage) -open import Function.Base using (_∘_; id) +open import Data.System.Values Monoid using (Values; <ε>; []-unique; _++_; ++ₛ; splitₛ; _≋_; []) +open import Data.Unit.Polymorphic using (tt) +open import Function using (Func; _⟶ₛ_; _⟨$⟩_; _∘_) +open import Function.Construct.Constant using () renaming (function to Const) +open import Functor.Instance.Nat.Pull using (Pull; Pull-defs) +open import Relation.Binary using (Setoid) open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_; module ≡-Reasoning) -open import Data.Bool.Base using (Bool) -open import Data.Setoid using (∣_∣) -open import Data.Circuit.Value using (Value) -open import Data.System.Values Value using (Values) - -open import Category.Instance.Setoids.SymmetricMonoidal {0ℓ} {0ℓ} using (Setoids-×) -open import Categories.Functor.Monoidal.Symmetric Natop,+,0 Setoids-× using (module Strong) -open Strong using (SymmetricMonoidalFunctor) -open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory) module Setoids-× = SymmetricMonoidalCategory Setoids-× -import Function.Construct.Constant as Const +open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using (products) + +open BinaryProducts products using (-×-) +open Cocartesian Nat-Cocartesian using (module Dual; _+₁_; +-assocʳ; +-comm; +-swap; +₁∘+-swap; i₁; i₂) +open Dual.op-binaryProducts using () renaming (-×- to -+-; assocˡ∘⟨⟩ to []∘assocʳ; swap∘⟨⟩ to []∘swap) open Func +open Morphism (Setoids-×.U) using (_≅_; module Iso) +open Strong using (SymmetricMonoidalFunctor) +open ≡-Reasoning -module _ where +private - open import Categories.Morphism (Setoids-×.U) using (_≅_; module Iso) - open import Data.Unit.Polymorphic using (tt) open _≅_ open Iso - Pull-ε : SingletonSetoid ≅ Values 0 - from Pull-ε = Const.function SingletonSetoid (Values 0) [] - to Pull-ε = Const.function (Values 0) SingletonSetoid tt + Pull-ε : ⊤ₛ ≅ Values 0 + from Pull-ε = Const ⊤ₛ (Values 0) [] + to Pull-ε = Const (Values 0) ⊤ₛ tt isoˡ (iso Pull-ε) = tt - isoʳ (iso Pull-ε) () - -++ₛ : {n m : ℕ} → Values n ×ₛ Values m ⟶ₛ Values (n + m) -to ++ₛ (xs , ys) = xs ++ ys -cong ++ₛ (≗xs , ≗ys) = ++-cong _ _ ≗xs ≗ys - -splitₛ : {n m : ℕ} → Values (n + m) ⟶ₛ Values n ×ₛ Values m -to (splitₛ {n} {m}) v = v ∘ (_↑ˡ m) , v ∘ (n ↑ʳ_) -cong (splitₛ {n} {m}) v₁≋v₂ = v₁≋v₂ ∘ (_↑ˡ m) , v₁≋v₂ ∘ (n ↑ʳ_) - -Pull-++ - : {n n′ m m′ : ℕ} - (f : Fin n → Fin n′) - (g : Fin m → Fin m′) - {xs : ∣ Values n′ ∣} - {ys : ∣ Values m′ ∣} - → (Pull₁ f ⟨$⟩ xs) ++ (Pull₁ g ⟨$⟩ ys) ≗ Pull₁ (f +₁ g) ⟨$⟩ (xs ++ ys) -Pull-++ {n} {n′} {m} {m′} f g {xs} {ys} e = begin - (xs ∘ f ++ ys ∘ g) e ≡⟨ [,]-map (splitAt n e) ⟨ - [ xs , ys ]′ (map f g (splitAt n e)) ≡⟨ ≡.cong [ xs , ys ]′ (splitAt-join n′ m′ (map f g (splitAt n e))) ⟨ - [ xs , ys ]′ (splitAt n′ (join n′ m′ (map f g (splitAt n e)))) ≡⟨ ≡.cong ([ xs , ys ]′ ∘ splitAt n′) ([,]-map (splitAt n e)) ⟩ - [ xs , ys ]′ (splitAt n′ ((f +₁ g) e)) ∎ - where - open ≡-Reasoning - -⊗-homomorphism : NaturalIsomorphism (-×- ∘F (Pull ⁂ Pull)) (Pull ∘F -+-) -⊗-homomorphism = niHelper record - { η = λ (n , m) → ++ₛ {n} {m} - ; η⁻¹ = λ (n , m) → splitₛ {n} {m} - ; commute = λ (f , g) → Pull-++ f g - ; iso = λ (n , m) → record - { isoˡ = λ { {x , y} → (λ i → ≡.cong [ x , y ] (splitAt-↑ˡ n i m)) , (λ i → ≡.cong [ x , y ] (splitAt-↑ʳ n m i)) } - ; isoʳ = λ { {x} i → ≡.trans (≡.sym ([,]-∘ x (splitAt n i))) (≡.cong x (join-splitAt n m i)) } - } - } - where - open import Data.Sum.Base using ([_,_]) - open import Data.Product.Base using (proj₁; proj₂) - -++-↑ˡ - : {n m : ℕ} - (X : ∣ Values n ∣) - (Y : ∣ Values m ∣) - → (X ++ Y) ∘ i₁ ≗ X -++-↑ˡ {n} {m} X Y i = ≡.cong [ X , Y ]′ (splitAt-↑ˡ n i m) - -++-↑ʳ - : {n m : ℕ} - (X : ∣ Values n ∣) - (Y : ∣ Values m ∣) - → (X ++ Y) ∘ i₂ ≗ Y -++-↑ʳ {n} {m} X Y i = ≡.cong [ X , Y ]′ (splitAt-↑ʳ n m i) - --- TODO move to Data.Vector -++-assoc - : {m n o : ℕ} - (X : ∣ Values m ∣) - (Y : ∣ Values n ∣) - (Z : ∣ Values o ∣) - → ((X ++ Y) ++ Z) ∘ +-assocʳ {m} ≗ X ++ (Y ++ Z) -++-assoc {m} {n} {o} X Y Z i = begin - ((X ++ Y) ++ Z) (+-assocʳ {m} i) ≡⟨⟩ - ((X ++ Y) ++ Z) ([ i₁ ∘ i₁ , _ ]′ (splitAt m i)) ≡⟨ [,]-∘ ((X ++ Y) ++ Z) (splitAt m i) ⟩ - [ ((X ++ Y) ++ Z) ∘ i₁ ∘ i₁ , _ ]′ (splitAt m i) ≡⟨ [-,]-cong (++-↑ˡ (X ++ Y) Z ∘ i₁) (splitAt m i) ⟩ - [ (X ++ Y) ∘ i₁ , _ ]′ (splitAt m i) ≡⟨ [-,]-cong (++-↑ˡ X Y) (splitAt m i) ⟩ - [ X , ((X ++ Y) ++ Z) ∘ [ _ , _ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([,]-∘ ((X ++ Y) ++ Z) ∘ splitAt n) (splitAt m i) ⟩ - [ X , [ (_ ++ Z) ∘ i₁ ∘ i₂ {m} , _ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([-,]-cong (++-↑ˡ (X ++ Y) Z ∘ i₂) ∘ splitAt n) (splitAt m i) ⟩ - [ X , [ (X ++ Y) ∘ i₂ , _ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([-,]-cong (++-↑ʳ X Y) ∘ splitAt n) (splitAt m i) ⟩ - [ X , [ Y , ((X ++ Y) ++ Z) ∘ i₂ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([,-]-cong (++-↑ʳ (X ++ Y) Z) ∘ splitAt n) (splitAt m i) ⟩ - [ X , [ Y , Z ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨⟩ - (X ++ (Y ++ Z)) i ∎ - where - open Bool - open Fin - open ≡-Reasoning - --- TODO also Data.Vector -Pull-unitaryˡ - : {n : ℕ} - (X : ∣ Values n ∣) - → (X ++ []) ∘ i₁ ≗ X -Pull-unitaryˡ {n} X i = begin - [ X , [] ]′ (splitAt _ (i ↑ˡ 0)) ≡⟨ ≡.cong ([ X , [] ]′) (splitAt-↑ˡ n i 0) ⟩ - [ X , [] ]′ (inj₁ i) ≡⟨⟩ - X i ∎ - where - open ≡-Reasoning - -open import Function.Bundles using (Inverse) -open import Categories.Category.Instance.Nat using (Nat) -open import Categories.Morphism Nat using (_≅_) -Pull-swap - : {n m : ℕ} - (X : ∣ Values n ∣) - (Y : ∣ Values m ∣) - → (X ++ Y) ∘ (+-swap {n}) ≗ Y ++ X -Pull-swap {n} {m} X Y i = begin - ((X ++ Y) ∘ +-swap {n}) i ≡⟨ [,]-∘ (X ++ Y) (splitAt m i) ⟩ - [ (X ++ Y) ∘ i₂ , (X ++ Y) ∘ i₁ ]′ (splitAt m i) ≡⟨ [-,]-cong (++-↑ʳ X Y) (splitAt m i) ⟩ - [ Y , (X ++ Y) ∘ i₁ ]′ (splitAt m i) ≡⟨ [,-]-cong (++-↑ˡ X Y) (splitAt m i) ⟩ - [ Y , X ]′ (splitAt m i) ≡⟨⟩ - (Y ++ X) i ∎ - where - open ≡-Reasoning - open Inverse - module +-swap = _≅_ (+-comm {m} {n}) - n+m↔m+n : Permutation (n + m) (m + n) - n+m↔m+n .to = +-swap.to - n+m↔m+n .from = +-swap.from - n+m↔m+n .to-cong ≡.refl = ≡.refl - n+m↔m+n .from-cong ≡.refl = ≡.refl - n+m↔m+n .inverse = (λ { ≡.refl → +-swap.isoˡ _ }) , (λ { ≡.refl → +-swap.isoʳ _ }) + isoʳ (iso Pull-ε) {x} = []-unique [] x + + opaque + unfolding _++_ + unfolding Pull-defs + Pull-++ + : {n n′ m m′ : ℕ} + (f : Fin n → Fin n′) + (g : Fin m → Fin m′) + {xs : ∣ Values n′ ∣} + {ys : ∣ Values m′ ∣} + → (Pull.₁ f ⟨$⟩ xs) ++ (Pull.₁ g ⟨$⟩ ys) ≋ Pull.₁ (f +₁ g) ⟨$⟩ (xs ++ ys) + Pull-++ {n} {n′} {m} {m′} f g {xs} {ys} e = begin + (xs ∘ f ++ ys ∘ g) e ≡⟨ [,]-map (splitAt n e) ⟨ + [ xs , ys ]′ (map f g (splitAt n e)) ≡⟨ ≡.cong [ xs , ys ]′ (splitAt-join n′ m′ (map f g (splitAt n e))) ⟨ + (xs ++ ys) (join n′ m′ (map f g (splitAt n e))) ≡⟨ ≡.cong (xs ++ ys) ([,]-map (splitAt n e)) ⟩ + (xs ++ ys) ((f +₁ g) e) ∎ + + module _ {n m : ℕ} where + + opaque + unfolding splitₛ + + open import Function.Construct.Setoid using (setoid) + open module ⇒ₛ {A} {B} = Setoid (setoid {0ℓ} {0ℓ} {0ℓ} {0ℓ} A B) using (_≈_) + open import Function.Construct.Setoid using (_∙_) + open import Function.Construct.Identity using () renaming (function to Id) + + split∘++ : splitₛ ∙ ++ₛ ≈ Id (Values n ×ₛ Values m) + split∘++ {xs , ys} .proj₁ i = ≡.cong [ xs , ys ]′ (splitAt-↑ˡ n i m) + split∘++ {xs , ys} .proj₂ i = ≡.cong [ xs , ys ]′ (splitAt-↑ʳ n m i) + + ++∘split : ++ₛ {n} ∙ splitₛ ≈ Id (Values (n + m)) + ++∘split {x} i = ≡.trans (≡.sym ([,]-∘ x (splitAt n i))) (≡.cong x (join-splitAt n m i)) + + ⊗-homomorphism : NaturalIsomorphism (-×- ∘F (Pull ⁂ Pull)) (Pull ∘F -+-) + ⊗-homomorphism = niHelper record + { η = λ (n , m) → ++ₛ {n} {m} + ; η⁻¹ = λ (n , m) → splitₛ {n} {m} + ; commute = λ { {n , m} {n′ , m′} (f , g) {xs , ys} → Pull-++ f g } + ; iso = λ (n , m) → record + { isoˡ = split∘++ + ; isoʳ = ++∘split + } + } + + module _ {n m : ℕ} where + + opaque + unfolding Pull-++ + + Pull-i₁ + : (X : ∣ Values n ∣) + (Y : ∣ Values m ∣) + → Pull.₁ i₁ ⟨$⟩ (X ++ Y) ≋ X + Pull-i₁ X Y i = ≡.cong [ X , Y ]′ (splitAt-↑ˡ n i m) + + Pull-i₂ + : (X : ∣ Values n ∣) + (Y : ∣ Values m ∣) + → Pull.₁ i₂ ⟨$⟩ (X ++ Y) ≋ Y + Pull-i₂ X Y i = ≡.cong [ X , Y ]′ (splitAt-↑ʳ n m i) + + opaque + unfolding Pull-++ + + Push-assoc + : {m n o : ℕ} + (X : ∣ Values m ∣) + (Y : ∣ Values n ∣) + (Z : ∣ Values o ∣) + → Pull.₁ (+-assocʳ {m} {n} {o}) ⟨$⟩ ((X ++ Y) ++ Z) ≋ X ++ (Y ++ Z) + Push-assoc {m} {n} {o} X Y Z i = ++-assoc X Y Z i + + Pull-swap + : {n m : ℕ} + (X : ∣ Values n ∣) + (Y : ∣ Values m ∣) + → Pull.₁ (+-swap {n}) ⟨$⟩ (X ++ Y) ≋ Y ++ X + Pull-swap {n} {m} X Y i = begin + ((X ++ Y) ∘ +-swap {n}) i ≡⟨ [,]-∘ (X ++ Y) (splitAt m i) ⟩ + [ (X ++ Y) ∘ i₂ , (X ++ Y) ∘ i₁ ]′ (splitAt m i) ≡⟨ [-,]-cong (Pull-i₂ X Y) (splitAt m i) ⟩ + [ Y , (X ++ Y) ∘ i₁ ]′ (splitAt m i) ≡⟨ [,-]-cong (Pull-i₁ X Y) (splitAt m i) ⟩ + [ Y , X ]′ (splitAt m i) ≡⟨⟩ + (Y ++ X) i ∎ open SymmetricMonoidalFunctor + Pull,++,[] : SymmetricMonoidalFunctor Pull,++,[] .F = Pull Pull,++,[] .isBraidedMonoidal = record { isStrongMonoidal = record { ε = Pull-ε ; ⊗-homo = ⊗-homomorphism - ; associativity = λ { {m} {n} {o} {(X , Y) , Z} i → ++-assoc X Y Z i } - ; unitaryˡ = λ _ → ≡.refl - ; unitaryʳ = λ { {n} {X , _} i → Pull-unitaryˡ X i } + ; associativity = λ { {_} {_} {_} {(X , Y) , Z} → Push-assoc X Y Z } + ; unitaryˡ = λ { {n} {_ , X} → Pull-i₂ {0} {n} [] X } + ; unitaryʳ = λ { {n} {X , _} → Pull-i₁ {n} {0} X [] } } - ; braiding-compat = λ { {n} {m} {X , Y} i → Pull-swap X Y i } + ; braiding-compat = λ { {n} {m} {X , Y} → Pull-swap X Y } } + +module Pull,++,[] = SymmetricMonoidalFunctor Pull,++,[] |
