diff options
Diffstat (limited to 'Functor/Monoidal/Instance/Nat/Push.agda')
| -rw-r--r-- | Functor/Monoidal/Instance/Nat/Push.agda | 209 |
1 files changed, 209 insertions, 0 deletions
diff --git a/Functor/Monoidal/Instance/Nat/Push.agda b/Functor/Monoidal/Instance/Nat/Push.agda new file mode 100644 index 0000000..2e8c0cf --- /dev/null +++ b/Functor/Monoidal/Instance/Nat/Push.agda @@ -0,0 +1,209 @@ +{-# OPTIONS --without-K --safe #-} + +module Functor.Monoidal.Instance.Nat.Push where + +open import Categories.Category.Instance.Nat using (Nat) +open import Data.Bool.Base using (Bool; false) +open import Data.Subset.Functional using (Subset; ⁅_⁆; ⊥) +open import Function.Base using (_∘_; case_of_; _$_; id) +open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_) +open import Level using (0ℓ; Level) +open import Relation.Binary using (Rel; Setoid) +open import Functor.Instance.Nat.Push using (Push; Push-defs) +open import Data.Setoid.Unit using (⊤ₛ) +open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) +open import Data.Vec.Functional as Vec using (Vector) +open import Data.Vector using (++-assoc; ++-↑ˡ; ++-↑ʳ) +-- open import Data.Vec.Functional.Properties using (++-cong) +open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian) +open import Function.Construct.Constant using () renaming (function to Const) +open import Categories.Category.BinaryProducts using (module BinaryProducts) +open import Categories.Category.Cartesian using (Cartesian) +open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using (products) +open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory) +open import Categories.Category.Instance.Nat using (Nat-Cocartesian) +open import Categories.Category.Cocartesian using (Cocartesian) +open import Categories.Category.Product using (_⁂_) +open import Categories.Functor using () renaming (_∘F_ to _∘′_) +open Cocartesian Nat-Cocartesian using (module Dual; i₁; i₂; -+-; _+₁_; +-assoc; +-assocʳ; +-assocˡ; +-comm; +-swap; +₁∘+-swap) +open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_) +open import Data.Nat using (ℕ; _+_) +open import Data.Fin using (Fin) +open import Data.Product.Base using (_,_; _×_; Σ) +open import Data.Fin.Preimage using (preimage; preimage-⊥; preimage-cong₂) +open import Functor.Monoidal.Instance.Nat.Preimage using (preimage-++) +open import Data.Sum.Base using ([_,_]; [_,_]′; inj₁; inj₂) +open import Data.Sum.Properties using ([,]-cong; [,-]-cong; [-,]-cong; [,]-∘; [,]-map) +open import Data.Circuit.Merge using (merge-with; merge; merge-⊥; merge-[]; ⁅⁆-++; merge-++; merge-cong₁; merge-cong₂; merge-suc; _when_; join-merge; merge-preimage-ρ; merge-⁅⁆) +open import Data.Circuit.Value using (Value; join; join-comm; join-assoc; Monoid) +open import Data.Fin.Base using (splitAt; _↑ˡ_; _↑ʳ_) renaming (join to joinAt) +open import Data.Fin.Properties using (splitAt-↑ˡ; splitAt-↑ʳ; splitAt⁻¹-↑ˡ; splitAt⁻¹-↑ʳ; ↑ˡ-injective; ↑ʳ-injective; _≟_) +open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≢_; _≗_; module ≡-Reasoning) +open BinaryProducts products using (-×-) +open Value using (U) +open Bool using (false) + +open import Function.Bundles using (Equivalence) +open import Category.Monoidal.Instance.Nat using (Nat,+,0) +open import Category.Instance.Setoids.SymmetricMonoidal {0ℓ} {0ℓ} using (Setoids-×) +open import Categories.Functor.Monoidal.Symmetric Nat,+,0 Setoids-× using (module Lax) +open Lax using (SymmetricMonoidalFunctor) +open import Categories.Morphism Nat using (_≅_) +open import Function.Bundles using (Inverse) +open import Data.Fin.Permutation using (Permutation; _⟨$⟩ʳ_; _⟨$⟩ˡ_) +open Dual.op-binaryProducts using () renaming (assocˡ∘⟨⟩ to []∘assocʳ; swap∘⟨⟩ to []∘swap) +open import Relation.Nullary.Decidable using (does; does-⇔; dec-false) +open import Data.Setoid using (∣_∣) + +open ℕ + +open import Data.System.Values Monoid using (Values; <ε>; ++ₛ; _++_; head; tail; _≋_) + +open Func +open ≡-Reasoning + +private + + Push-ε : ⊤ₛ {0ℓ} {0ℓ} ⟶ₛ Values 0 + Push-ε = Const ⊤ₛ (Values 0) <ε> + + opaque + + unfolding _++_ + + unfolding Push-defs + Push-++ + : {n n′ m m′ : ℕ } + → (f : Fin n → Fin n′) + → (g : Fin m → Fin m′) + → (xs : ∣ Values n ∣) + → (ys : ∣ Values m ∣) + → (Push.₁ f ⟨$⟩ xs) ++ (Push.₁ g ⟨$⟩ ys) + ≋ Push.₁ (f +₁ g) ⟨$⟩ (xs ++ ys) + Push-++ {n} {n′} {m} {m′} f g xs ys i = begin + ((merge xs ∘ preimage f ∘ ⁅_⁆) ++ (merge ys ∘ preimage g ∘ ⁅_⁆)) i + ≡⟨ [,]-cong left right (splitAt n′ i) ⟩ + [ (λ x → merge (xs ++ ys) _) , (λ x → merge (xs ++ ys) _) ]′ (splitAt n′ i) + ≡⟨ [,]-∘ (merge (xs ++ ys) ∘ (preimage (f +₁ g))) (splitAt n′ i) ⟨ + merge (xs ++ ys) (preimage (f +₁ g) ((⁅⁆++⊥ Vec.++ ⊥++⁅⁆) i)) ≡⟨ merge-cong₂ (xs ++ ys) (preimage-cong₂ (f +₁ g) (⁅⁆-++ {n′} i)) ⟩ + merge (xs ++ ys) (preimage (f +₁ g) ⁅ i ⁆) ∎ + where + ⁅⁆++⊥ : Vector (Subset (n′ + m′)) n′ + ⁅⁆++⊥ x = ⁅ x ⁆ Vec.++ ⊥ + ⊥++⁅⁆ : Vector (Subset (n′ + m′)) m′ + ⊥++⁅⁆ x = ⊥ Vec.++ ⁅ x ⁆ + left : (x : Fin n′) → merge xs (preimage f ⁅ x ⁆) ≡ merge (xs ++ ys) (preimage (f +₁ g) (⁅ x ⁆ Vec.++ ⊥)) + left x = begin + merge xs (preimage f ⁅ x ⁆) ≡⟨ join-comm U (merge xs (preimage f ⁅ x ⁆)) ⟩ + join (merge xs (preimage f ⁅ x ⁆)) U ≡⟨ ≡.cong (join (merge _ _)) (merge-⊥ ys) ⟨ + join (merge xs (preimage f ⁅ x ⁆)) (merge ys ⊥) ≡⟨ ≡.cong (join (merge _ _)) (merge-cong₂ ys (preimage-⊥ g)) ⟨ + join (merge xs (preimage f ⁅ x ⁆)) (merge ys (preimage g ⊥)) ≡⟨ merge-++ xs ys (preimage f ⁅ x ⁆) (preimage g ⊥) ⟨ + merge (xs ++ ys) ((preimage f ⁅ x ⁆) Vec.++ (preimage g ⊥)) ≡⟨ merge-cong₂ (xs ++ ys) (preimage-++ f g) ⟩ + merge (xs ++ ys) (preimage (f +₁ g) (⁅ x ⁆ Vec.++ ⊥)) ∎ + right : (x : Fin m′) → merge ys (preimage g ⁅ x ⁆) ≡ merge (xs ++ ys) (preimage (f +₁ g) (⊥ Vec.++ ⁅ x ⁆)) + right x = begin + merge ys (preimage g ⁅ x ⁆) ≡⟨⟩ + join U (merge ys (preimage g ⁅ x ⁆)) ≡⟨ ≡.cong (λ h → join h (merge _ _)) (merge-⊥ xs) ⟨ + join (merge xs ⊥) (merge ys (preimage g ⁅ x ⁆)) ≡⟨ ≡.cong (λ h → join h (merge _ _)) (merge-cong₂ xs (preimage-⊥ f)) ⟨ + join (merge xs (preimage f ⊥)) (merge ys (preimage g ⁅ x ⁆)) ≡⟨ merge-++ xs ys (preimage f ⊥) (preimage g ⁅ x ⁆) ⟨ + merge (xs ++ ys) ((preimage f ⊥) Vec.++ (preimage g ⁅ x ⁆)) ≡⟨ merge-cong₂ (xs ++ ys) (preimage-++ f g) ⟩ + merge (xs ++ ys) (preimage (f +₁ g) (⊥ Vec.++ ⁅ x ⁆)) ∎ + + ⊗-homomorphism : NaturalTransformation (-×- ∘′ (Push ⁂ Push)) (Push ∘′ -+-) + ⊗-homomorphism = ntHelper record + { η = λ (n , m) → ++ₛ {n} {m} + ; commute = λ { (f , g) {xs , ys} → Push-++ f g xs ys } + } + + opaque + + unfolding Push-defs + unfolding _++_ + + Push-assoc + : {m n o : ℕ} + (X : ∣ Values m ∣) + (Y : ∣ Values n ∣) + (Z : ∣ Values o ∣) + → (Push.₁ (+-assocˡ {m} {n} {o}) ⟨$⟩ ((X ++ Y) ++ Z)) ≋ X ++ Y ++ Z + Push-assoc {m} {n} {o} X Y Z i = begin + merge ((X ++ Y) ++ Z) (preimage (+-assocˡ {m}) ⁅ i ⁆) ≡⟨ merge-preimage-ρ ↔-mno ((X ++ Y) ++ Z) ⁅ i ⁆ ⟩ + merge (((X ++ Y) ++ Z) ∘ (+-assocʳ {m})) (⁅ i ⁆) ≡⟨⟩ + merge (((X ++ Y) ++ Z) ∘ (+-assocʳ {m})) (preimage id ⁅ i ⁆) ≡⟨ merge-cong₁ (++-assoc X Y Z) (preimage id ⁅ i ⁆) ⟩ + merge (X ++ (Y ++ Z)) (preimage id ⁅ i ⁆) ≡⟨ Push.identity i ⟩ + (X ++ (Y ++ Z)) i ∎ + where + open Inverse + module +-assoc = _≅_ (+-assoc {m} {n} {o}) + ↔-mno : Permutation ((m + n) + o) (m + (n + o)) + ↔-mno .to = +-assocˡ {m} + ↔-mno .from = +-assocʳ {m} + ↔-mno .to-cong ≡.refl = ≡.refl + ↔-mno .from-cong ≡.refl = ≡.refl + ↔-mno .inverse = (λ { ≡.refl → +-assoc.isoˡ _ }) , λ { ≡.refl → +-assoc.isoʳ _ } + + Push-unitaryˡ + : {n : ℕ} + (X : ∣ Values n ∣) + → Push.₁ id ⟨$⟩ (<ε> ++ X) ≋ X + Push-unitaryˡ = merge-⁅⁆ + + preimage-++′ + : {n m o : ℕ} + (f : Vector (Fin o) n) + (g : Vector (Fin o) m) + (S : Subset o) + → preimage (f Vec.++ g) S ≗ preimage f S Vec.++ preimage g S + preimage-++′ {n} f g S = [,]-∘ S ∘ splitAt n + + Push-unitaryʳ + : {n : ℕ} + (X : ∣ Values n ∣) + → Push.₁ (id Vec.++ (λ())) ⟨$⟩ (X ++ (<ε> {0})) ≋ X + Push-unitaryʳ {n} X i = begin + merge (X ++ <ε>) (preimage (id Vec.++ (λ ())) ⁅ i ⁆) ≡⟨ merge-cong₂ (X Vec.++ <ε>) (preimage-++′ id (λ ()) ⁅ i ⁆) ⟩ + merge (X ++ <ε>) (⁅ i ⁆ Vec.++ preimage (λ ()) ⁅ i ⁆) ≡⟨ merge-++ X <ε> ⁅ i ⁆ (preimage (λ ()) ⁅ i ⁆) ⟩ + join (merge X ⁅ i ⁆) (merge <ε> (preimage (λ ()) ⁅ i ⁆)) ≡⟨ ≡.cong (join (merge X ⁅ i ⁆)) (merge-[] <ε> (preimage (λ ()) ⁅ i ⁆)) ⟩ + join (merge X ⁅ i ⁆) U ≡⟨ join-comm (merge X ⁅ i ⁆) U ⟩ + merge X ⁅ i ⁆ ≡⟨ merge-⁅⁆ X i ⟩ + X i ∎ + + Push-swap + : {n m : ℕ} + (X : ∣ Values n ∣) + (Y : ∣ Values m ∣) + → Push.₁ (+-swap {m}) ⟨$⟩ (X ++ Y) ≋ (Y ++ X) + Push-swap {n} {m} X Y i = begin + merge (X ++ Y) (preimage (+-swap {m}) ⁅ i ⁆) ≡⟨ merge-preimage-ρ n+m↔m+n (X ++ Y) ⁅ i ⁆ ⟩ + merge ((X ++ Y) ∘ +-swap {n}) ⁅ i ⁆ ≡⟨ merge-⁅⁆ ((X ++ Y) ∘ (+-swap {n})) i ⟩ + ((X ++ Y) ∘ +-swap {n}) i ≡⟨ [,]-∘ (X ++ Y) (splitAt m i) ⟩ + [ (X ++ Y) ∘ i₂ , (X ++ Y) ∘ i₁ ]′ (splitAt m i) ≡⟨ [-,]-cong (++-↑ʳ X Y) (splitAt m i) ⟩ + [ Y , (X ++ Y) ∘ i₁ ]′ (splitAt m i) ≡⟨ [,-]-cong (++-↑ˡ X Y) (splitAt m i) ⟩ + [ Y , X ]′ (splitAt m i) ≡⟨⟩ + (Y ++ X) i ∎ + where + open ≡-Reasoning + open Inverse + module +-swap = _≅_ (+-comm {m} {n}) + n+m↔m+n : Permutation (n + m) (m + n) + n+m↔m+n .to = +-swap.to + n+m↔m+n .from = +-swap.from + n+m↔m+n .to-cong ≡.refl = ≡.refl + n+m↔m+n .from-cong ≡.refl = ≡.refl + n+m↔m+n .inverse = (λ { ≡.refl → +-swap.isoˡ _ }) , (λ { ≡.refl → +-swap.isoʳ _ }) + +open SymmetricMonoidalFunctor +Push,++,[] : SymmetricMonoidalFunctor +Push,++,[] .F = Push +Push,++,[] .isBraidedMonoidal = record + { isMonoidal = record + { ε = Push-ε + ; ⊗-homo = ⊗-homomorphism + ; associativity = λ { {n} {m} {o} {(X , Y) , Z} → Push-assoc X Y Z } + ; unitaryˡ = λ { {n} {_ , X} → Push-unitaryˡ X } + ; unitaryʳ = λ { {n} {X , _} → Push-unitaryʳ X } + } + ; braiding-compat = λ { {n} {m} {X , Y} → Push-swap X Y } + } + +module Push,++,[] = SymmetricMonoidalFunctor Push,++,[] |
