aboutsummaryrefslogtreecommitdiff
path: root/Functor/Monoidal/Instance/Nat/Push.agda
diff options
context:
space:
mode:
Diffstat (limited to 'Functor/Monoidal/Instance/Nat/Push.agda')
-rw-r--r--Functor/Monoidal/Instance/Nat/Push.agda428
1 files changed, 149 insertions, 279 deletions
diff --git a/Functor/Monoidal/Instance/Nat/Push.agda b/Functor/Monoidal/Instance/Nat/Push.agda
index 667d68e..b53282d 100644
--- a/Functor/Monoidal/Instance/Nat/Push.agda
+++ b/Functor/Monoidal/Instance/Nat/Push.agda
@@ -9,12 +9,14 @@ open import Function.Base using (_∘_; case_of_; _$_; id)
open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_)
open import Level using (0ℓ; Level)
open import Relation.Binary using (Rel; Setoid)
-open import Functor.Instance.Nat.Push using (Push; Push₁; Push-identity)
-open import Categories.Category.Instance.SingletonSet using (SingletonSetoid)
+open import Functor.Instance.Nat.Push using (Push; Push-defs)
+open import Categories.Category.Instance.SingletonSet using () renaming (SingletonSetoid to ⊤ₛ)
open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
-open import Data.Vec.Functional using (Vector; []; _++_; head; tail)
-open import Data.Vec.Functional.Properties using (++-cong)
+open import Data.Vec.Functional as Vec using (Vector)
+open import Data.Vector using (++-assoc; ++-↑ˡ; ++-↑ʳ)
+-- open import Data.Vec.Functional.Properties using (++-cong)
open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian)
+open import Function.Construct.Constant using () renaming (function to Const)
open import Categories.Category.BinaryProducts using (module BinaryProducts)
open import Categories.Category.Cartesian using (Cartesian)
open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using (products)
@@ -25,17 +27,17 @@ open import Categories.Category.Product using (_⁂_)
open import Categories.Functor using () renaming (_∘F_ to _∘′_)
open Cocartesian Nat-Cocartesian using (module Dual; i₁; i₂; -+-; _+₁_; +-assoc; +-assocʳ; +-assocˡ; +-comm; +-swap; +₁∘+-swap)
open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
-open import Data.Nat.Base using (ℕ; _+_)
-open import Data.Fin.Base using (Fin)
+open import Data.Nat using (ℕ; _+_)
+open import Data.Fin using (Fin)
open import Data.Product.Base using (_,_; _×_; Σ)
open import Data.Fin.Preimage using (preimage; preimage-⊥; preimage-cong₂)
open import Functor.Monoidal.Instance.Nat.Preimage using (preimage-++)
open import Data.Sum.Base using ([_,_]; [_,_]′; inj₁; inj₂)
open import Data.Sum.Properties using ([,]-cong; [,-]-cong; [-,]-cong; [,]-∘; [,]-map)
-open import Data.Circuit.Merge using (merge-with; merge; merge-⊥; merge-[]; merge-cong₁; merge-cong₂; merge-suc; _when_; join-merge; merge-preimage-ρ; merge-⁅⁆)
-open import Data.Circuit.Value using (Value; join; join-comm; join-assoc)
+open import Data.Circuit.Merge using (merge-with; merge; merge-⊥; merge-[]; ⁅⁆-++; merge-++; merge-cong₁; merge-cong₂; merge-suc; _when_; join-merge; merge-preimage-ρ; merge-⁅⁆)
+open import Data.Circuit.Value using (Value; join; join-comm; join-assoc; Monoid)
open import Data.Fin.Base using (splitAt; _↑ˡ_; _↑ʳ_) renaming (join to joinAt)
-open import Data.Fin.Properties using (splitAt-↑ˡ; splitAt-↑ʳ; splitAt⁻¹-↑ˡ; splitAt⁻¹-↑ʳ; ↑ˡ-injective; ↑ʳ-injective; _≟_; 2↔Bool)
+open import Data.Fin.Properties using (splitAt-↑ˡ; splitAt-↑ʳ; splitAt⁻¹-↑ˡ; splitAt⁻¹-↑ʳ; ↑ˡ-injective; ↑ʳ-injective; _≟_)
open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≢_; _≗_; module ≡-Reasoning)
open BinaryProducts products using (-×-)
open Value using (U)
@@ -51,278 +53,144 @@ open import Function.Bundles using (Inverse)
open import Data.Fin.Permutation using (Permutation; _⟨$⟩ʳ_; _⟨$⟩ˡ_)
open Dual.op-binaryProducts using () renaming (assocˡ∘⟨⟩ to []∘assocʳ; swap∘⟨⟩ to []∘swap)
open import Relation.Nullary.Decidable using (does; does-⇔; dec-false)
-
-open import Data.System.Values Value using (Values)
-
-open Func
-Push-ε : SingletonSetoid {0ℓ} {0ℓ} ⟶ₛ Values 0
-to Push-ε x = []
-cong Push-ε x ()
-
-++ₛ : {n m : ℕ} → Values n ×ₛ Values m ⟶ₛ Values (n + m)
-to ++ₛ (xs , ys) = xs ++ ys
-cong ++ₛ (≗xs , ≗ys) = ++-cong _ _ ≗xs ≗ys
-
-∣_∣ : {c ℓ : Level} → Setoid c ℓ → Set c
-∣_∣ = Setoid.Carrier
+open import Data.Setoid using (∣_∣)
open ℕ
-merge-++
- : {n m : ℕ}
- (xs : ∣ Values n ∣)
- (ys : ∣ Values m ∣)
- (S₁ : Subset n)
- (S₂ : Subset m)
- → merge (xs ++ ys) (S₁ ++ S₂)
- ≡ join (merge xs S₁) (merge ys S₂)
-merge-++ {zero} {m} xs ys S₁ S₂ = begin
- merge (xs ++ ys) (S₁ ++ S₂) ≡⟨ merge-cong₂ (xs ++ ys) (λ _ → ≡.refl) ⟩
- merge (xs ++ ys) S₂ ≡⟨ merge-cong₁ (λ _ → ≡.refl) S₂ ⟩
- merge ys S₂ ≡⟨ ≡.cong (λ h → join h (merge ys S₂)) (merge-[] xs S₁) ⟨
- join (merge xs S₁) (merge ys S₂) ∎
- where
- open ≡-Reasoning
-merge-++ {suc n} {m} xs ys S₁ S₂ = begin
- merge (xs ++ ys) (S₁ ++ S₂) ≡⟨ merge-suc (xs ++ ys) (S₁ ++ S₂) ⟩
- merge-with (head xs when head S₁) (tail (xs ++ ys)) (tail (S₁ ++ S₂)) ≡⟨ join-merge (head xs when head S₁) (tail (xs ++ ys)) (tail (S₁ ++ S₂)) ⟨
- join (head xs when head S₁) (merge (tail (xs ++ ys)) (tail (S₁ ++ S₂)))
- ≡⟨ ≡.cong (join (head xs when head S₁)) (merge-cong₁ ([,]-map ∘ splitAt n) (tail (S₁ ++ S₂))) ⟩
- join (head xs when head S₁) (merge (tail xs ++ ys) (tail (S₁ ++ S₂)))
- ≡⟨ ≡.cong (join (head xs when head S₁)) (merge-cong₂ (tail xs ++ ys) ([,]-map ∘ splitAt n)) ⟩
- join (head xs when head S₁) (merge (tail xs ++ ys) (tail S₁ ++ S₂)) ≡⟨ ≡.cong (join (head xs when head S₁)) (merge-++ (tail xs) ys (tail S₁) S₂) ⟩
- join (head xs when head S₁) (join (merge (tail xs) (tail S₁)) (merge ys S₂)) ≡⟨ join-assoc (head xs when head S₁) (merge (tail xs) (tail S₁)) _ ⟨
- join (join (head xs when head S₁) (merge (tail xs) (tail S₁))) (merge ys S₂)
- ≡⟨ ≡.cong (λ h → join h (merge ys S₂)) (join-merge (head xs when head S₁) (tail xs) (tail S₁)) ⟩
- join (merge-with (head xs when head S₁) (tail xs) (tail S₁)) (merge ys S₂) ≡⟨ ≡.cong (λ h → join h (merge ys S₂)) (merge-suc xs S₁) ⟨
- join (merge xs S₁) (merge ys S₂) ∎
- where
- open ≡-Reasoning
-
-open Fin
-⁅⁆-≟ : {n : ℕ} (x y : Fin n) → ⁅ x ⁆ y ≡ does (x ≟ y)
-⁅⁆-≟ zero zero = ≡.refl
-⁅⁆-≟ zero (suc y) = ≡.refl
-⁅⁆-≟ (suc x) zero = ≡.refl
-⁅⁆-≟ (suc x) (suc y) = ⁅⁆-≟ x y
-Push-++
- : {n n′ m m′ : ℕ}
- (f : Fin n → Fin n′)
- (g : Fin m → Fin m′)
- (xs : ∣ Values n ∣)
- (ys : ∣ Values m ∣)
- → merge xs ∘ preimage f ∘ ⁅_⁆ ++ merge ys ∘ preimage g ∘ ⁅_⁆
- ≗ merge (xs ++ ys) ∘ preimage (f +₁ g) ∘ ⁅_⁆
-Push-++ {n} {n′} {m} {m′} f g xs ys i = begin
- ((merge xs ∘ preimage f ∘ ⁅_⁆) ++ (merge ys ∘ preimage g ∘ ⁅_⁆)) i ≡⟨⟩
- [ merge xs ∘ preimage f ∘ ⁅_⁆ , merge ys ∘ preimage g ∘ ⁅_⁆ ]′ (splitAt n′ i)
- ≡⟨ [,]-cong left right (splitAt n′ i) ⟩
- [ (λ x → merge (xs ++ ys) _) , (λ x → merge (xs ++ ys) _) ]′ (splitAt n′ i)
- ≡⟨ [,]-∘ (merge (xs ++ ys) ∘ (preimage (f +₁ g))) (splitAt n′ i) ⟨
- merge (xs ++ ys) (preimage (f +₁ g) ([ ⁅⁆++⊥ , ⊥++⁅⁆ ]′ (splitAt n′ i))) ≡⟨⟩
- merge (xs ++ ys) (preimage (f +₁ g) ((⁅⁆++⊥ ++ ⊥++⁅⁆) i)) ≡⟨ merge-cong₂ (xs ++ ys) (preimage-cong₂ (f +₁ g) (⁅⁆-++ i)) ⟩
- merge (xs ++ ys) (preimage (f +₁ g) ⁅ i ⁆) ∎
- where
- open ≡-Reasoning
- left : (x : Fin n′) → merge xs (preimage f ⁅ x ⁆) ≡ merge (xs ++ ys) (preimage (f +₁ g) (⁅ x ⁆ ++ ⊥))
- left x = begin
- merge xs (preimage f ⁅ x ⁆) ≡⟨ join-comm U (merge xs (preimage f ⁅ x ⁆)) ⟩
- join (merge xs (preimage f ⁅ x ⁆)) U ≡⟨ ≡.cong (join (merge _ _)) (merge-⊥ ys) ⟨
- join (merge xs (preimage f ⁅ x ⁆)) (merge ys ⊥) ≡⟨ ≡.cong (join (merge _ _)) (merge-cong₂ ys (preimage-⊥ g)) ⟨
- join (merge xs (preimage f ⁅ x ⁆)) (merge ys (preimage g ⊥)) ≡⟨ merge-++ xs ys (preimage f ⁅ x ⁆) (preimage g ⊥) ⟨
- merge (xs ++ ys) ((preimage f ⁅ x ⁆) ++ (preimage g ⊥)) ≡⟨ merge-cong₂ (xs ++ ys) (preimage-++ f g) ⟩
- merge (xs ++ ys) (preimage (f +₁ g) (⁅ x ⁆ ++ ⊥)) ∎
- right : (x : Fin m′) → merge ys (preimage g ⁅ x ⁆) ≡ merge (xs ++ ys) (preimage (f +₁ g) (⊥ ++ ⁅ x ⁆))
- right x = begin
- merge ys (preimage g ⁅ x ⁆) ≡⟨⟩
- join U (merge ys (preimage g ⁅ x ⁆)) ≡⟨ ≡.cong (λ h → join h (merge _ _)) (merge-⊥ xs) ⟨
- join (merge xs ⊥) (merge ys (preimage g ⁅ x ⁆)) ≡⟨ ≡.cong (λ h → join h (merge _ _)) (merge-cong₂ xs (preimage-⊥ f)) ⟨
- join (merge xs (preimage f ⊥)) (merge ys (preimage g ⁅ x ⁆)) ≡⟨ merge-++ xs ys (preimage f ⊥) (preimage g ⁅ x ⁆) ⟨
- merge (xs ++ ys) ((preimage f ⊥) ++ (preimage g ⁅ x ⁆)) ≡⟨ merge-cong₂ (xs ++ ys) (preimage-++ f g) ⟩
- merge (xs ++ ys) (preimage (f +₁ g) (⊥ ++ ⁅ x ⁆)) ∎
- ⁅⁆++⊥ : Vector (Subset (n′ + m′)) n′
- ⁅⁆++⊥ x = ⁅ x ⁆ ++ ⊥
- ⊥++⁅⁆ : Vector (Subset (n′ + m′)) m′
- ⊥++⁅⁆ x = ⊥ ++ ⁅ x ⁆
+open import Data.System.Values Monoid using (Values; <ε>; ++ₛ; _++_; head; tail; _≋_)
- open ℕ
-
- open Equivalence
-
- ⁅⁆-++
- : (i : Fin (n′ + m′))
- → [ (λ x → ⁅ x ⁆ ++ ⊥) , (λ x → ⊥ ++ ⁅ x ⁆) ]′ (splitAt n′ i) ≗ ⁅ i ⁆
- ⁅⁆-++ i x with splitAt n′ i in eq₁
- ... | inj₁ i′ with splitAt n′ x in eq₂
- ... | inj₁ x′ = begin
- ⁅ i′ ⁆ x′ ≡⟨ ⁅⁆-≟ i′ x′ ⟩
- does (i′ ≟ x′) ≡⟨ does-⇔ ⇔ (i′ ≟ x′) (i′ ↑ˡ m′ ≟ x′ ↑ˡ m′) ⟩
- does (i′ ↑ˡ m′ ≟ x′ ↑ˡ m′) ≡⟨ ⁅⁆-≟ (i′ ↑ˡ m′) (x′ ↑ˡ m′) ⟨
- ⁅ i′ ↑ˡ m′ ⁆ (x′ ↑ˡ m′) ≡⟨ ≡.cong₂ ⁅_⁆ (splitAt⁻¹-↑ˡ eq₁) (splitAt⁻¹-↑ˡ eq₂) ⟩
- ⁅ i ⁆ x ∎
- where
- ⇔ : Equivalence (≡.setoid (i′ ≡ x′)) (≡.setoid (i′ ↑ˡ m′ ≡ x′ ↑ˡ m′))
- ⇔ .to = ≡.cong (_↑ˡ m′)
- ⇔ .from = ↑ˡ-injective m′ i′ x′
- ⇔ .to-cong ≡.refl = ≡.refl
- ⇔ .from-cong ≡.refl = ≡.refl
- ... | inj₂ x′ = begin
- false ≡⟨ dec-false (i′ ↑ˡ m′ ≟ n′ ↑ʳ x′) ↑ˡ≢↑ʳ ⟨
- does (i′ ↑ˡ m′ ≟ n′ ↑ʳ x′) ≡⟨ ⁅⁆-≟ (i′ ↑ˡ m′) (n′ ↑ʳ x′) ⟨
- ⁅ i′ ↑ˡ m′ ⁆ (n′ ↑ʳ x′) ≡⟨ ≡.cong₂ ⁅_⁆ (splitAt⁻¹-↑ˡ eq₁) (splitAt⁻¹-↑ʳ eq₂) ⟩
- ⁅ i ⁆ x ∎
- where
- ↑ˡ≢↑ʳ : i′ ↑ˡ m′ ≢ n′ ↑ʳ x′
- ↑ˡ≢↑ʳ ≡ = case ≡.trans (≡.sym (splitAt-↑ˡ n′ i′ m′)) (≡.trans (≡.cong (splitAt n′) ≡) (splitAt-↑ʳ n′ m′ x′)) of λ { () }
- ⁅⁆-++ i x | inj₂ i′ with splitAt n′ x in eq₂
- ⁅⁆-++ i x | inj₂ i′ | inj₁ x′ = ≡.trans (≡.cong ([ ⊥ , ⁅ i′ ⁆ ]′) eq₂) $ begin
- false ≡⟨ dec-false (n′ ↑ʳ i′ ≟ x′ ↑ˡ m′) ↑ʳ≢↑ˡ ⟨
- does (n′ ↑ʳ i′ ≟ x′ ↑ˡ m′) ≡⟨ ⁅⁆-≟ (n′ ↑ʳ i′) (x′ ↑ˡ m′) ⟨
- ⁅ n′ ↑ʳ i′ ⁆ (x′ ↑ˡ m′) ≡⟨ ≡.cong₂ ⁅_⁆ (splitAt⁻¹-↑ʳ eq₁) (splitAt⁻¹-↑ˡ eq₂) ⟩
- ⁅ i ⁆ x ∎
+open Func
+open ≡-Reasoning
+
+private
+
+ Push-ε : ⊤ₛ {0ℓ} {0ℓ} ⟶ₛ Values 0
+ Push-ε = Const ⊤ₛ (Values 0) <ε>
+
+ opaque
+
+ unfolding _++_
+
+ unfolding Push-defs
+ Push-++
+ : {n n′ m m′ : ℕ }
+ → (f : Fin n → Fin n′)
+ → (g : Fin m → Fin m′)
+ → (xs : ∣ Values n ∣)
+ → (ys : ∣ Values m ∣)
+ → (Push.₁ f ⟨$⟩ xs) ++ (Push.₁ g ⟨$⟩ ys)
+ ≋ Push.₁ (f +₁ g) ⟨$⟩ (xs ++ ys)
+ Push-++ {n} {n′} {m} {m′} f g xs ys i = begin
+ ((merge xs ∘ preimage f ∘ ⁅_⁆) ++ (merge ys ∘ preimage g ∘ ⁅_⁆)) i
+ ≡⟨ [,]-cong left right (splitAt n′ i) ⟩
+ [ (λ x → merge (xs ++ ys) _) , (λ x → merge (xs ++ ys) _) ]′ (splitAt n′ i)
+ ≡⟨ [,]-∘ (merge (xs ++ ys) ∘ (preimage (f +₁ g))) (splitAt n′ i) ⟨
+ merge (xs ++ ys) (preimage (f +₁ g) ((⁅⁆++⊥ Vec.++ ⊥++⁅⁆) i)) ≡⟨ merge-cong₂ (xs ++ ys) (preimage-cong₂ (f +₁ g) (⁅⁆-++ {n′} i)) ⟩
+ merge (xs ++ ys) (preimage (f +₁ g) ⁅ i ⁆) ∎
where
- ↑ʳ≢↑ˡ : n′ ↑ʳ i′ ≢ x′ ↑ˡ m′
- ↑ʳ≢↑ˡ ≡ = case ≡.trans (≡.sym (splitAt-↑ʳ n′ m′ i′)) (≡.trans (≡.cong (splitAt n′) ≡) (splitAt-↑ˡ n′ x′ m′)) of λ { () }
- ⁅⁆-++ i x | inj₂ i′ | inj₂ x′ = begin
- [ ⊥ , ⁅ i′ ⁆ ] (splitAt n′ x) ≡⟨ ≡.cong ([ ⊥ , ⁅ i′ ⁆ ]) eq₂ ⟩
- ⁅ i′ ⁆ x′ ≡⟨ ⁅⁆-≟ i′ x′ ⟩
- does (i′ ≟ x′) ≡⟨ does-⇔ ⇔ (i′ ≟ x′) (n′ ↑ʳ i′ ≟ n′ ↑ʳ x′) ⟩
- does (n′ ↑ʳ i′ ≟ n′ ↑ʳ x′) ≡⟨ ⁅⁆-≟ (n′ ↑ʳ i′) (n′ ↑ʳ x′) ⟨
- ⁅ n′ ↑ʳ i′ ⁆ (n′ ↑ʳ x′) ≡⟨ ≡.cong₂ ⁅_⁆ (splitAt⁻¹-↑ʳ eq₁) (splitAt⁻¹-↑ʳ eq₂) ⟩
- ⁅ i ⁆ x ∎
+ ⁅⁆++⊥ : Vector (Subset (n′ + m′)) n′
+ ⁅⁆++⊥ x = ⁅ x ⁆ Vec.++ ⊥
+ ⊥++⁅⁆ : Vector (Subset (n′ + m′)) m′
+ ⊥++⁅⁆ x = ⊥ Vec.++ ⁅ x ⁆
+ left : (x : Fin n′) → merge xs (preimage f ⁅ x ⁆) ≡ merge (xs ++ ys) (preimage (f +₁ g) (⁅ x ⁆ Vec.++ ⊥))
+ left x = begin
+ merge xs (preimage f ⁅ x ⁆) ≡⟨ join-comm U (merge xs (preimage f ⁅ x ⁆)) ⟩
+ join (merge xs (preimage f ⁅ x ⁆)) U ≡⟨ ≡.cong (join (merge _ _)) (merge-⊥ ys) ⟨
+ join (merge xs (preimage f ⁅ x ⁆)) (merge ys ⊥) ≡⟨ ≡.cong (join (merge _ _)) (merge-cong₂ ys (preimage-⊥ g)) ⟨
+ join (merge xs (preimage f ⁅ x ⁆)) (merge ys (preimage g ⊥)) ≡⟨ merge-++ xs ys (preimage f ⁅ x ⁆) (preimage g ⊥) ⟨
+ merge (xs ++ ys) ((preimage f ⁅ x ⁆) Vec.++ (preimage g ⊥)) ≡⟨ merge-cong₂ (xs ++ ys) (preimage-++ f g) ⟩
+ merge (xs ++ ys) (preimage (f +₁ g) (⁅ x ⁆ Vec.++ ⊥)) ∎
+ right : (x : Fin m′) → merge ys (preimage g ⁅ x ⁆) ≡ merge (xs ++ ys) (preimage (f +₁ g) (⊥ Vec.++ ⁅ x ⁆))
+ right x = begin
+ merge ys (preimage g ⁅ x ⁆) ≡⟨⟩
+ join U (merge ys (preimage g ⁅ x ⁆)) ≡⟨ ≡.cong (λ h → join h (merge _ _)) (merge-⊥ xs) ⟨
+ join (merge xs ⊥) (merge ys (preimage g ⁅ x ⁆)) ≡⟨ ≡.cong (λ h → join h (merge _ _)) (merge-cong₂ xs (preimage-⊥ f)) ⟨
+ join (merge xs (preimage f ⊥)) (merge ys (preimage g ⁅ x ⁆)) ≡⟨ merge-++ xs ys (preimage f ⊥) (preimage g ⁅ x ⁆) ⟨
+ merge (xs ++ ys) ((preimage f ⊥) Vec.++ (preimage g ⁅ x ⁆)) ≡⟨ merge-cong₂ (xs ++ ys) (preimage-++ f g) ⟩
+ merge (xs ++ ys) (preimage (f +₁ g) (⊥ Vec.++ ⁅ x ⁆)) ∎
+
+ ⊗-homomorphism : NaturalTransformation (-×- ∘′ (Push ⁂ Push)) (Push ∘′ -+-)
+ ⊗-homomorphism = ntHelper record
+ { η = λ (n , m) → ++ₛ {n} {m}
+ ; commute = λ { (f , g) {xs , ys} → Push-++ f g xs ys }
+ }
+
+ opaque
+
+ unfolding Push-defs
+ unfolding _++_
+
+ Push-assoc
+ : {m n o : ℕ}
+ (X : ∣ Values m ∣)
+ (Y : ∣ Values n ∣)
+ (Z : ∣ Values o ∣)
+ → (Push.₁ (+-assocˡ {m} {n} {o}) ⟨$⟩ ((X ++ Y) ++ Z)) ≋ X ++ Y ++ Z
+ Push-assoc {m} {n} {o} X Y Z i = begin
+ merge ((X ++ Y) ++ Z) (preimage (+-assocˡ {m}) ⁅ i ⁆) ≡⟨ merge-preimage-ρ ↔-mno ((X ++ Y) ++ Z) ⁅ i ⁆ ⟩
+ merge (((X ++ Y) ++ Z) ∘ (+-assocʳ {m})) (⁅ i ⁆) ≡⟨⟩
+ merge (((X ++ Y) ++ Z) ∘ (+-assocʳ {m})) (preimage id ⁅ i ⁆) ≡⟨ merge-cong₁ (++-assoc X Y Z) (preimage id ⁅ i ⁆) ⟩
+ merge (X ++ (Y ++ Z)) (preimage id ⁅ i ⁆) ≡⟨ Push.identity i ⟩
+ (X ++ (Y ++ Z)) i ∎
where
- ⇔ : Equivalence (≡.setoid (i′ ≡ x′)) (≡.setoid (n′ ↑ʳ i′ ≡ n′ ↑ʳ x′))
- ⇔ .to = ≡.cong (n′ ↑ʳ_)
- ⇔ .from = ↑ʳ-injective n′ i′ x′
- ⇔ .to-cong ≡.refl = ≡.refl
- ⇔ .from-cong ≡.refl = ≡.refl
-
-⊗-homomorphism : NaturalTransformation (-×- ∘′ (Push ⁂ Push)) (Push ∘′ -+-)
-⊗-homomorphism = ntHelper record
- { η = λ (n , m) → ++ₛ {n} {m}
- ; commute = λ { {n , m} {n′ , m′} (f , g) {xs , ys} i → Push-++ f g xs ys i }
- }
-
-++-↑ˡ
- : {n m : ℕ}
- (X : ∣ Values n ∣)
- (Y : ∣ Values m ∣)
- → (X ++ Y) ∘ i₁ ≗ X
-++-↑ˡ {n} {m} X Y i = ≡.cong [ X , Y ]′ (splitAt-↑ˡ n i m)
-
-++-↑ʳ
- : {n m : ℕ}
- (X : ∣ Values n ∣)
- (Y : ∣ Values m ∣)
- → (X ++ Y) ∘ i₂ ≗ Y
-++-↑ʳ {n} {m} X Y i = ≡.cong [ X , Y ]′ (splitAt-↑ʳ n m i)
-
-++-assoc
- : {m n o : ℕ}
- (X : ∣ Values m ∣)
- (Y : ∣ Values n ∣)
- (Z : ∣ Values o ∣)
- → ((X ++ Y) ++ Z) ∘ +-assocʳ {m} ≗ X ++ (Y ++ Z)
-++-assoc {m} {n} {o} X Y Z i = begin
- ((X ++ Y) ++ Z) (+-assocʳ {m} i) ≡⟨⟩
- ((X ++ Y) ++ Z) ([ i₁ ∘ i₁ , _ ]′ (splitAt m i)) ≡⟨ [,]-∘ ((X ++ Y) ++ Z) (splitAt m i) ⟩
- [ ((X ++ Y) ++ Z) ∘ i₁ ∘ i₁ , _ ]′ (splitAt m i) ≡⟨ [-,]-cong (++-↑ˡ (X ++ Y) Z ∘ i₁) (splitAt m i) ⟩
- [ (X ++ Y) ∘ i₁ , _ ]′ (splitAt m i) ≡⟨ [-,]-cong (++-↑ˡ X Y) (splitAt m i) ⟩
- [ X , ((X ++ Y) ++ Z) ∘ [ _ , _ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([,]-∘ ((X ++ Y) ++ Z) ∘ splitAt n) (splitAt m i) ⟩
- [ X , [ (_ ++ Z) ∘ i₁ ∘ i₂ {m} , _ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([-,]-cong (++-↑ˡ (X ++ Y) Z ∘ i₂) ∘ splitAt n) (splitAt m i) ⟩
- [ X , [ (X ++ Y) ∘ i₂ , _ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([-,]-cong (++-↑ʳ X Y) ∘ splitAt n) (splitAt m i) ⟩
- [ X , [ Y , ((X ++ Y) ++ Z) ∘ i₂ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([,-]-cong (++-↑ʳ (X ++ Y) Z) ∘ splitAt n) (splitAt m i) ⟩
- [ X , [ Y , Z ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨⟩
- (X ++ (Y ++ Z)) i ∎
- where
- open Bool
- open Fin
- open ≡-Reasoning
-
-Preimage-unitaryˡ
- : {n : ℕ}
- (X : Subset n)
- → (X ++ []) ∘ (_↑ˡ 0) ≗ X
-Preimage-unitaryˡ {n} X i = begin
- [ X , [] ]′ (splitAt _ (i ↑ˡ 0)) ≡⟨ ≡.cong ([ X , [] ]′) (splitAt-↑ˡ n i 0) ⟩
- [ X , [] ]′ (inj₁ i) ≡⟨⟩
- X i ∎
- where
- open ≡-Reasoning
-
-Push-assoc
- : {m n o : ℕ}
- (X : ∣ Values m ∣)
- (Y : ∣ Values n ∣)
- (Z : ∣ Values o ∣)
- → merge ((X ++ Y) ++ Z) ∘ preimage (+-assocˡ {m}) ∘ ⁅_⁆
- ≗ X ++ (Y ++ Z)
-Push-assoc {m} {n} {o} X Y Z i = begin
- merge ((X ++ Y) ++ Z) (preimage (+-assocˡ {m}) ⁅ i ⁆) ≡⟨ merge-preimage-ρ ↔-mno ((X ++ Y) ++ Z) ⁅ i ⁆ ⟩
- merge (((X ++ Y) ++ Z) ∘ (+-assocʳ {m})) (⁅ i ⁆) ≡⟨⟩
- merge (((X ++ Y) ++ Z) ∘ (+-assocʳ {m})) (preimage id ⁅ i ⁆) ≡⟨ merge-cong₁ (++-assoc X Y Z) (preimage id ⁅ i ⁆) ⟩
- merge (X ++ (Y ++ Z)) (preimage id ⁅ i ⁆) ≡⟨ Push-identity i ⟩
- (X ++ (Y ++ Z)) i ∎
- where
- open Inverse
- module +-assoc = _≅_ (+-assoc {m} {n} {o})
- ↔-mno : Permutation ((m + n) + o) (m + (n + o))
- ↔-mno .to = +-assocˡ {m}
- ↔-mno .from = +-assocʳ {m}
- ↔-mno .to-cong ≡.refl = ≡.refl
- ↔-mno .from-cong ≡.refl = ≡.refl
- ↔-mno .inverse = (λ { ≡.refl → +-assoc.isoˡ _ }) , λ { ≡.refl → +-assoc.isoʳ _ }
- open ≡-Reasoning
-
-preimage-++′
- : {n m o : ℕ}
- (f : Vector (Fin o) n)
- (g : Vector (Fin o) m)
- (S : Subset o)
- → preimage (f ++ g) S ≗ preimage f S ++ preimage g S
-preimage-++′ {n} f g S = [,]-∘ S ∘ splitAt n
-
-Push-unitaryʳ
- : {n : ℕ}
- (X : ∣ Values n ∣)
- (i : Fin n)
- → merge (X ++ []) (preimage (id ++ (λ ())) ⁅ i ⁆) ≡ X i
-Push-unitaryʳ {n} X i = begin
- merge (X ++ []) (preimage (id ++ (λ ())) ⁅ i ⁆) ≡⟨ merge-cong₂ (X ++ []) (preimage-++′ id (λ ()) ⁅ i ⁆) ⟩
- merge (X ++ []) (preimage id ⁅ i ⁆ ++ preimage (λ ()) ⁅ i ⁆) ≡⟨⟩
- merge (X ++ []) (⁅ i ⁆ ++ preimage (λ ()) ⁅ i ⁆) ≡⟨ merge-++ X [] ⁅ i ⁆ (preimage (λ ()) ⁅ i ⁆) ⟩
- join (merge X ⁅ i ⁆) (merge [] (preimage (λ ()) ⁅ i ⁆)) ≡⟨ ≡.cong (join (merge X ⁅ i ⁆)) (merge-[] [] (preimage (λ ()) ⁅ i ⁆)) ⟩
- join (merge X ⁅ i ⁆) U ≡⟨ join-comm (merge X ⁅ i ⁆) U ⟩
- merge X ⁅ i ⁆ ≡⟨ merge-⁅⁆ X i ⟩
- X i ∎
- where
- open ≡-Reasoning
- t : Fin (n + 0) → Fin n
- t = id ++ (λ ())
-
-Push-swap
- : {n m : ℕ}
- (X : ∣ Values n ∣)
- (Y : ∣ Values m ∣)
- → merge (X ++ Y) ∘ preimage (+-swap {m}) ∘ ⁅_⁆ ≗ Y ++ X
-Push-swap {n} {m} X Y i = begin
- merge (X ++ Y) (preimage (+-swap {m}) ⁅ i ⁆) ≡⟨ merge-preimage-ρ n+m↔m+n (X ++ Y) ⁅ i ⁆ ⟩
- merge ((X ++ Y) ∘ +-swap {n}) ⁅ i ⁆ ≡⟨ merge-⁅⁆ ((X ++ Y) ∘ (+-swap {n})) i ⟩
- ((X ++ Y) ∘ +-swap {n}) i ≡⟨ [,]-∘ (X ++ Y) (splitAt m i) ⟩
- [ (X ++ Y) ∘ i₂ , (X ++ Y) ∘ i₁ ]′ (splitAt m i) ≡⟨ [-,]-cong (++-↑ʳ X Y) (splitAt m i) ⟩
- [ Y , (X ++ Y) ∘ i₁ ]′ (splitAt m i) ≡⟨ [,-]-cong (++-↑ˡ X Y) (splitAt m i) ⟩
- [ Y , X ]′ (splitAt m i) ≡⟨⟩
- (Y ++ X) i ∎
- where
- open ≡-Reasoning
- open Inverse
- module +-swap = _≅_ (+-comm {m} {n})
- n+m↔m+n : Permutation (n + m) (m + n)
- n+m↔m+n .to = +-swap.to
- n+m↔m+n .from = +-swap.from
- n+m↔m+n .to-cong ≡.refl = ≡.refl
- n+m↔m+n .from-cong ≡.refl = ≡.refl
- n+m↔m+n .inverse = (λ { ≡.refl → +-swap.isoˡ _ }) , (λ { ≡.refl → +-swap.isoʳ _ })
+ open Inverse
+ module +-assoc = _≅_ (+-assoc {m} {n} {o})
+ ↔-mno : Permutation ((m + n) + o) (m + (n + o))
+ ↔-mno .to = +-assocˡ {m}
+ ↔-mno .from = +-assocʳ {m}
+ ↔-mno .to-cong ≡.refl = ≡.refl
+ ↔-mno .from-cong ≡.refl = ≡.refl
+ ↔-mno .inverse = (λ { ≡.refl → +-assoc.isoˡ _ }) , λ { ≡.refl → +-assoc.isoʳ _ }
+
+ Push-unitaryˡ
+ : {n : ℕ}
+ (X : ∣ Values n ∣)
+ → Push.₁ id ⟨$⟩ (<ε> ++ X) ≋ X
+ Push-unitaryˡ = merge-⁅⁆
+
+ preimage-++′
+ : {n m o : ℕ}
+ (f : Vector (Fin o) n)
+ (g : Vector (Fin o) m)
+ (S : Subset o)
+ → preimage (f Vec.++ g) S ≗ preimage f S Vec.++ preimage g S
+ preimage-++′ {n} f g S = [,]-∘ S ∘ splitAt n
+
+ Push-unitaryʳ
+ : {n : ℕ}
+ (X : ∣ Values n ∣)
+ → Push.₁ (id Vec.++ (λ())) ⟨$⟩ (X ++ (<ε> {0})) ≋ X
+ Push-unitaryʳ {n} X i = begin
+ merge (X ++ <ε>) (preimage (id Vec.++ (λ ())) ⁅ i ⁆) ≡⟨ merge-cong₂ (X Vec.++ <ε>) (preimage-++′ id (λ ()) ⁅ i ⁆) ⟩
+ merge (X ++ <ε>) (⁅ i ⁆ Vec.++ preimage (λ ()) ⁅ i ⁆) ≡⟨ merge-++ X <ε> ⁅ i ⁆ (preimage (λ ()) ⁅ i ⁆) ⟩
+ join (merge X ⁅ i ⁆) (merge <ε> (preimage (λ ()) ⁅ i ⁆)) ≡⟨ ≡.cong (join (merge X ⁅ i ⁆)) (merge-[] <ε> (preimage (λ ()) ⁅ i ⁆)) ⟩
+ join (merge X ⁅ i ⁆) U ≡⟨ join-comm (merge X ⁅ i ⁆) U ⟩
+ merge X ⁅ i ⁆ ≡⟨ merge-⁅⁆ X i ⟩
+ X i ∎
+
+ Push-swap
+ : {n m : ℕ}
+ (X : ∣ Values n ∣)
+ (Y : ∣ Values m ∣)
+ → Push.₁ (+-swap {m}) ⟨$⟩ (X ++ Y) ≋ (Y ++ X)
+ Push-swap {n} {m} X Y i = begin
+ merge (X ++ Y) (preimage (+-swap {m}) ⁅ i ⁆) ≡⟨ merge-preimage-ρ n+m↔m+n (X ++ Y) ⁅ i ⁆ ⟩
+ merge ((X ++ Y) ∘ +-swap {n}) ⁅ i ⁆ ≡⟨ merge-⁅⁆ ((X ++ Y) ∘ (+-swap {n})) i ⟩
+ ((X ++ Y) ∘ +-swap {n}) i ≡⟨ [,]-∘ (X ++ Y) (splitAt m i) ⟩
+ [ (X ++ Y) ∘ i₂ , (X ++ Y) ∘ i₁ ]′ (splitAt m i) ≡⟨ [-,]-cong (++-↑ʳ X Y) (splitAt m i) ⟩
+ [ Y , (X ++ Y) ∘ i₁ ]′ (splitAt m i) ≡⟨ [,-]-cong (++-↑ˡ X Y) (splitAt m i) ⟩
+ [ Y , X ]′ (splitAt m i) ≡⟨⟩
+ (Y ++ X) i ∎
+ where
+ open ≡-Reasoning
+ open Inverse
+ module +-swap = _≅_ (+-comm {m} {n})
+ n+m↔m+n : Permutation (n + m) (m + n)
+ n+m↔m+n .to = +-swap.to
+ n+m↔m+n .from = +-swap.from
+ n+m↔m+n .to-cong ≡.refl = ≡.refl
+ n+m↔m+n .from-cong ≡.refl = ≡.refl
+ n+m↔m+n .inverse = (λ { ≡.refl → +-swap.isoˡ _ }) , (λ { ≡.refl → +-swap.isoʳ _ })
open SymmetricMonoidalFunctor
Push,++,[] : SymmetricMonoidalFunctor
@@ -331,9 +199,11 @@ Push,++,[] .isBraidedMonoidal = record
{ isMonoidal = record
{ ε = Push-ε
; ⊗-homo = ⊗-homomorphism
- ; associativity = λ { {m} {n} {o} {(X , Y) , Z} i → Push-assoc X Y Z i }
- ; unitaryˡ = λ { {n} {_ , X} i → merge-⁅⁆ X i }
- ; unitaryʳ = λ { {n} {X , _} i → Push-unitaryʳ X i }
+ ; associativity = λ { {n} {m} {o} {(X , Y) , Z} → Push-assoc X Y Z }
+ ; unitaryˡ = λ { {n} {_ , X} → Push-unitaryˡ X }
+ ; unitaryʳ = λ { {n} {X , _} → Push-unitaryʳ X }
}
- ; braiding-compat = λ { {n} {m} {X , Y} i → Push-swap X Y i }
+ ; braiding-compat = λ { {n} {m} {X , Y} → Push-swap X Y }
}
+
+module Push,++,[] = SymmetricMonoidalFunctor Push,++,[]