diff options
Diffstat (limited to 'Functor/Monoidal/Instance/Nat/System.agda')
| -rw-r--r-- | Functor/Monoidal/Instance/Nat/System.agda | 394 |
1 files changed, 394 insertions, 0 deletions
diff --git a/Functor/Monoidal/Instance/Nat/System.agda b/Functor/Monoidal/Instance/Nat/System.agda new file mode 100644 index 0000000..6659fb3 --- /dev/null +++ b/Functor/Monoidal/Instance/Nat/System.agda @@ -0,0 +1,394 @@ +{-# OPTIONS --without-K --safe #-} + +module Functor.Monoidal.Instance.Nat.System where + +import Categories.Category.Monoidal.Utilities as ⊗-Util +import Data.Circuit.Value as Value +import Data.Vec.Functional as Vec +import Relation.Binary.PropositionalEquality as ≡ + +open import Level using (0ℓ; suc; Level) + +open import Category.Monoidal.Instance.Nat using (Nat,+,0; Natop,+,0) +open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory; BraidedMonoidalCategory) +open import Category.Instance.Setoids.SymmetricMonoidal {0ℓ} {0ℓ} using () renaming (Setoids-× to 0ℓ-Setoids-×) +open import Category.Instance.Setoids.SymmetricMonoidal {suc 0ℓ} {suc 0ℓ} using (Setoids-×) + +module Natop,+,0 = SymmetricMonoidalCategory Natop,+,0 renaming (braidedMonoidalCategory to B) +module 0ℓ-Setoids-× = SymmetricMonoidalCategory 0ℓ-Setoids-× renaming (braidedMonoidalCategory to B) + +open import Functor.Monoidal.Instance.Nat.Pull using (Pull,++,[]) +open import Categories.Functor.Monoidal.Braided Natop,+,0.B 0ℓ-Setoids-×.B using (module Strong) + +Pull,++,[]B : Strong.BraidedMonoidalFunctor +Pull,++,[]B = record { isBraidedMonoidal = Pull,++,[].isBraidedMonoidal } +module Pull,++,[]B = Strong.BraidedMonoidalFunctor (record { isBraidedMonoidal = Pull,++,[].isBraidedMonoidal }) + +open import Categories.Category.BinaryProducts using (module BinaryProducts) +open import Categories.Category.Cartesian using (Cartesian) +open import Categories.Category.Cocartesian using (Cocartesian) +open import Categories.Category.Instance.Nat using (Nat; Nat-Cocartesian; Natop) +open import Categories.Category.Instance.Setoids using (Setoids) +open import Data.Setoid.Unit using (⊤ₛ) +open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian) +open import Categories.Category.Product using (Product) +open import Categories.Category.Product using (_⁂_) +open import Categories.Functor using (Functor) +open import Categories.Functor using (_∘F_) +open import Categories.Functor.Monoidal.Symmetric Nat,+,0 Setoids-× using (module Lax) +open import Categories.NaturalTransformation.Core using (NaturalTransformation; ntHelper) +open import Data.Circuit.Value using (Monoid) +open import Data.Fin using (Fin) +open import Data.Nat using (ℕ; _+_) +open import Data.Product using (_,_; dmap; _×_) renaming (map to ×-map) +open import Data.Product.Function.NonDependent.Setoid using (_×-function_; proj₁ₛ; proj₂ₛ; <_,_>ₛ; swapₛ) +open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_) +open import Data.Setoid using (_⇒ₛ_; ∣_∣) +open import Data.System {suc 0ℓ} using (Systemₛ; System; discrete; _≤_) +open import Data.System.Values Monoid using (++ₛ; splitₛ; Values; ++-cong; _++_; []) +open import Data.System.Values Value.Monoid using (_≋_; module ≋) +open import Data.Unit.Polymorphic using (⊤; tt) +open import Function using (Func; _⟶ₛ_; _⟨$⟩_; _∘_; id; case_of_) +open import Function.Construct.Constant using () renaming (function to Const) +open import Function.Construct.Identity using () renaming (function to Id) +open import Function.Construct.Setoid using (_∙_; setoid) +open import Functor.Instance.Nat.Pull using (Pull) +open import Functor.Instance.Nat.Push using (Push) +open import Functor.Instance.Nat.System using (Sys; Sys-defs) +open import Functor.Monoidal.Braided.Strong.Properties Pull,++,[]B using (braiding-compat-inv) +open import Functor.Monoidal.Instance.Nat.Push using (Push,++,[]) +open import Functor.Monoidal.Strong.Properties Pull,++,[].monoidalFunctor using (associativity-inv) +open import Functor.Monoidal.Strong.Properties Pull,++,[].monoidalFunctor using (unitaryʳ-inv; unitaryˡ-inv; module Shorthands) +open import Relation.Binary using (Setoid) +open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_) + +open module ⇒ₛ {A} {B} = Setoid (setoid {0ℓ} {0ℓ} {0ℓ} {0ℓ} A B) using (_≈_) + +open Cartesian (Setoids-Cartesian {suc 0ℓ} {suc 0ℓ}) using (products) + +open BinaryProducts products using (-×-) +open Cocartesian Nat-Cocartesian using (module Dual; i₁; i₂; -+-; _+₁_; +-assocʳ; +-assocˡ; +-comm; +-swap; +₁∘+-swap; +₁∘i₁; +₁∘i₂) +open Dual.op-binaryProducts using () renaming (×-assoc to +-assoc) +open SymmetricMonoidalCategory using () renaming (braidedMonoidalCategory to B) + +open Func + +Sys-ε : ⊤ₛ {suc 0ℓ} {suc 0ℓ} ⟶ₛ Systemₛ 0 +Sys-ε = Const ⊤ₛ (Systemₛ 0) (discrete 0) + +private + + variable + n m o : ℕ + c₁ c₂ c₃ c₄ c₅ c₆ : Level + ℓ₁ ℓ₂ ℓ₃ ℓ₄ ℓ₅ ℓ₆ : Level + +_×-⇒_ + : {A : Setoid c₁ ℓ₁} + {B : Setoid c₂ ℓ₂} + {C : Setoid c₃ ℓ₃} + {D : Setoid c₄ ℓ₄} + {E : Setoid c₅ ℓ₅} + {F : Setoid c₆ ℓ₆} + → A ⟶ₛ B ⇒ₛ C + → D ⟶ₛ E ⇒ₛ F + → A ×ₛ D ⟶ₛ B ×ₛ E ⇒ₛ C ×ₛ F +_×-⇒_ f g .to (x , y) = to f x ×-function to g y +_×-⇒_ f g .cong (x , y) = cong f x , cong g y + +⊗ : System n × System m → System (n + m) +⊗ {n} {m} (S₁ , S₂) = record + { S = S₁.S ×ₛ S₂.S + ; fₛ = S₁.fₛ ×-⇒ S₂.fₛ ∙ splitₛ + ; fₒ = ++ₛ ∙ S₁.fₒ ×-function S₂.fₒ + } + where + module S₁ = System S₁ + module S₂ = System S₂ + +opaque + + _~_ : {A B : Setoid 0ℓ 0ℓ} → Func A B → Func A B → Set + _~_ = _≈_ + infix 4 _~_ + + sym-~ + : {A B : Setoid 0ℓ 0ℓ} + {x y : Func A B} + → x ~ y + → y ~ x + sym-~ {A} {B} {x} {y} = 0ℓ-Setoids-×.Equiv.sym {A} {B} {x} {y} + +⊗ₛ + : {n m : ℕ} + → Systemₛ n ×ₛ Systemₛ m ⟶ₛ Systemₛ (n + m) +⊗ₛ .to = ⊗ +⊗ₛ {n} {m} .cong {a , b} {c , d} ((a≤c , c≤a) , (b≤d , d≤b)) = left , right + where + module a = System a + module b = System b + module c = System c + module d = System d + module a≤c = _≤_ a≤c + module b≤d = _≤_ b≤d + module c≤a = _≤_ c≤a + module d≤b = _≤_ d≤b + + open _≤_ + left : ⊗ₛ ⟨$⟩ (a , b) ≤ ⊗ₛ ⟨$⟩ (c , d) + left .⇒S = a≤c.⇒S ×-function b≤d.⇒S + left .≗-fₛ i with (i₁ , i₂) ← splitₛ ⟨$⟩ i = dmap (a≤c.≗-fₛ i₁) (b≤d.≗-fₛ i₂) + left .≗-fₒ = cong ++ₛ ∘ dmap a≤c.≗-fₒ b≤d.≗-fₒ + + right : ⊗ₛ ⟨$⟩ (c , d) ≤ ⊗ₛ ⟨$⟩ (a , b) + right .⇒S = c≤a.⇒S ×-function d≤b.⇒S + right .≗-fₛ i with (i₁ , i₂) ← splitₛ ⟨$⟩ i = dmap (c≤a.≗-fₛ i₁) (d≤b.≗-fₛ i₂) + right .≗-fₒ = cong ++ₛ ∘ dmap c≤a.≗-fₒ d≤b.≗-fₒ + +opaque + + unfolding Sys-defs + + System-⊗-≤ + : {n n′ m m′ : ℕ} + (X : System n) + (Y : System m) + (f : Fin n → Fin n′) + (g : Fin m → Fin m′) + → ⊗ (Sys.₁ f ⟨$⟩ X , Sys.₁ g ⟨$⟩ Y) ≤ Sys.₁ (f +₁ g) ⟨$⟩ ⊗ (X , Y) + System-⊗-≤ {n} {n′} {m} {m′} X Y f g = record + { ⇒S = Id (X.S ×ₛ Y.S) + ; ≗-fₛ = λ i s → cong (X.fₛ ×-⇒ Y.fₛ) (Pull,++,[].⊗-homo.⇐.sym-commute (f , g) {i}) {s} + ; ≗-fₒ = λ (s₁ , s₂) → Push,++,[].⊗-homo.commute (f , g) {X.fₒ′ s₁ , Y.fₒ′ s₂} + } + where + module X = System X + module Y = System Y + + System-⊗-≥ + : {n n′ m m′ : ℕ} + (X : System n) + (Y : System m) + (f : Fin n → Fin n′) + (g : Fin m → Fin m′) + → Sys.₁ (f +₁ g) ⟨$⟩ (⊗ (X , Y)) ≤ ⊗ (Sys.₁ f ⟨$⟩ X , Sys.₁ g ⟨$⟩ Y) + System-⊗-≥ {n} {n′} {m} {m′} X Y f g = record + { ⇒S = Id (X.S ×ₛ Y.S) + ; ≗-fₛ = λ i s → cong (X.fₛ ×-⇒ Y.fₛ) (Pull,++,[].⊗-homo.⇐.commute (f , g) {i}) {s} + ; ≗-fₒ = λ (s₁ , s₂) → Push,++,[].⊗-homo.sym-commute (f , g) {X.fₒ′ s₁ , Y.fₒ′ s₂} + } + where + module X = System X + module Y = System Y + +⊗-homomorphism : NaturalTransformation (-×- ∘F (Sys ⁂ Sys)) (Sys ∘F -+-) +⊗-homomorphism = ntHelper record + { η = λ (n , m) → ⊗ₛ {n} {m} + ; commute = λ { (f , g) {X , Y} → System-⊗-≤ X Y f g , System-⊗-≥ X Y f g } + } + +opaque + + unfolding Sys-defs + + ⊗-assoc-≤ + : (X : System n) + (Y : System m) + (Z : System o) + → Sys.₁ (+-assocˡ {n}) ⟨$⟩ (⊗ (⊗ (X , Y) , Z)) ≤ ⊗ (X , ⊗ (Y , Z)) + ⊗-assoc-≤ {n} {m} {o} X Y Z = record + { ⇒S = assocˡ + ; ≗-fₛ = λ i ((s₁ , s₂) , s₃) → cong (X.fₛ ×-⇒ (Y.fₛ ×-⇒ Z.fₛ) ∙ assocˡ) (associativity-inv {x = i}) {s₁ , s₂ , s₃} + ; ≗-fₒ = λ ((s₁ , s₂) , s₃) → Push,++,[].associativity {x = (X.fₒ′ s₁ , Y.fₒ′ s₂) , Z.fₒ′ s₃} + } + where + open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using () renaming (products to 0ℓ-products) + open BinaryProducts 0ℓ-products using (assocˡ) + + module X = System X + module Y = System Y + module Z = System Z + + ⊗-assoc-≥ + : (X : System n) + (Y : System m) + (Z : System o) + → ⊗ (X , ⊗ (Y , Z)) ≤ Sys.₁ (+-assocˡ {n}) ⟨$⟩ (⊗ (⊗ (X , Y) , Z)) + ⊗-assoc-≥ {n} {m} {o} X Y Z = record + { ⇒S = ×-assocʳ + ; ≗-fₛ = λ i (s₁ , s₂ , s₃) → cong ((X.fₛ ×-⇒ Y.fₛ) ×-⇒ Z.fₛ) (sym-split-assoc {i}) {(s₁ , s₂) , s₃} + ; ≗-fₒ = λ (s₁ , s₂ , s₃) → sym-++-assoc {(X.fₒ′ s₁ , Y.fₒ′ s₂) , Z.fₒ′ s₃} + } + where + open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using () renaming (products to prod) + open BinaryProducts prod using () renaming (assocʳ to ×-assocʳ; assocˡ to ×-assocˡ) + + +-assocℓ : Fin ((n + m) + o) → Fin (n + (m + o)) + +-assocℓ = +-assocˡ {n} {m} {o} + + opaque + + unfolding _~_ + + associativity-inv-~ : splitₛ ×-function Id (Values o) ∙ splitₛ ∙ Pull.₁ +-assocℓ ~ ×-assocʳ ∙ Id (Values n) ×-function splitₛ ∙ splitₛ + associativity-inv-~ {i} = associativity-inv {n} {m} {o} {i} + + associativity-~ : Push.₁ (+-assocˡ {n} {m} {o}) ∙ ++ₛ ∙ ++ₛ ×-function Id (Values o) ~ ++ₛ ∙ Id (Values n) ×-function ++ₛ ∙ ×-assocˡ + associativity-~ {i} = Push,++,[].associativity {n} {m} {o} {i} + + sym-split-assoc-~ : ×-assocʳ ∙ Id (Values n) ×-function splitₛ ∙ splitₛ ~ splitₛ ×-function Id (Values o) ∙ splitₛ ∙ Pull.₁ +-assocℓ + sym-split-assoc-~ = sym-~ associativity-inv-~ + + sym-++-assoc-~ : ++ₛ ∙ Id (Values n) ×-function ++ₛ ∙ ×-assocˡ ~ Push.₁ (+-assocˡ {n} {m} {o}) ∙ ++ₛ ∙ ++ₛ ×-function Id (Values o) + sym-++-assoc-~ = sym-~ associativity-~ + + opaque + + unfolding _~_ + + sym-split-assoc : ×-assocʳ ∙ Id (Values n) ×-function splitₛ ∙ splitₛ ≈ splitₛ ×-function Id (Values o) ∙ splitₛ ∙ Pull.₁ +-assocℓ + sym-split-assoc {i} = sym-split-assoc-~ {i} + + sym-++-assoc : ++ₛ ∙ Id (Values n) ×-function ++ₛ ∙ ×-assocˡ ≈ Push.₁ (+-assocˡ {n} {m} {o}) ∙ ++ₛ ∙ ++ₛ ×-function Id (Values o) + sym-++-assoc {i} = sym-++-assoc-~ + + module X = System X + module Y = System Y + module Z = System Z + + Sys-unitaryˡ-≤ : (X : System n) → Sys.₁ id ⟨$⟩ (⊗ (discrete 0 , X)) ≤ X + Sys-unitaryˡ-≤ {n} X = record + { ⇒S = proj₂ₛ + ; ≗-fₛ = λ i (_ , s) → cong (X.fₛ ∙ proj₂ₛ {A = ⊤ₛ {0ℓ}}) (unitaryˡ-inv {n} {i}) + ; ≗-fₒ = λ (_ , s) → Push,++,[].unitaryˡ {n} {tt , X.fₒ′ s} + } + where + module X = System X + + Sys-unitaryˡ-≥ : (X : System n) → X ≤ Sys.₁ id ⟨$⟩ (⊗ (discrete 0 , X)) + Sys-unitaryˡ-≥ {n} X = record + { ⇒S = < Const X.S ⊤ₛ tt , Id X.S >ₛ + ; ≗-fₛ = λ i s → cong (disc.fₛ ×-⇒ X.fₛ ∙ ε⇒ ×-function Id (Values n)) (sym-split-unitaryˡ {i}) + ; ≗-fₒ = λ s → sym-++-unitaryˡ {_ , X.fₒ′ s} + } + where + module X = System X + open SymmetricMonoidalCategory 0ℓ-Setoids-× using (module Equiv) + open ⊗-Util.Shorthands 0ℓ-Setoids-×.monoidal using (λ⇐) + open Shorthands using (ε⇐; ε⇒) + module disc = System (discrete 0) + sym-split-unitaryˡ + : λ⇐ ≈ ε⇐ ×-function Id (Values n) ∙ splitₛ ∙ Pull.₁ ((λ ()) Vec.++ id) + sym-split-unitaryˡ = + 0ℓ-Setoids-×.Equiv.sym + {Values n} + {⊤ₛ ×ₛ Values n} + {ε⇐ ×-function Id (Values n) ∙ splitₛ ∙ Pull.₁ ((λ ()) Vec.++ id)} + {λ⇐} + (unitaryˡ-inv {n}) + sym-++-unitaryˡ : proj₂ₛ {A = ⊤ₛ {0ℓ} {0ℓ}} ≈ Push.₁ ((λ ()) Vec.++ id) ∙ ++ₛ ∙ Push,++,[].ε ×-function Id (Values n) + sym-++-unitaryˡ = + 0ℓ-Setoids-×.Equiv.sym + {⊤ₛ ×ₛ Values n} + {Values n} + {Push.₁ ((λ ()) Vec.++ id) ∙ ++ₛ ∙ Push,++,[].ε ×-function Id (Values n)} + {proj₂ₛ} + (Push,++,[].unitaryˡ {n}) + + + Sys-unitaryʳ-≤ : (X : System n) → Sys.₁ (id Vec.++ (λ ())) ⟨$⟩ (⊗ {n} {0} (X , discrete 0)) ≤ X + Sys-unitaryʳ-≤ {n} X = record + { ⇒S = proj₁ₛ + ; ≗-fₛ = λ i (s , _) → cong (X.fₛ ∙ proj₁ₛ {B = ⊤ₛ {0ℓ}}) (unitaryʳ-inv {n} {i}) + ; ≗-fₒ = λ (s , _) → Push,++,[].unitaryʳ {n} {X.fₒ′ s , tt} + } + where + module X = System X + + Sys-unitaryʳ-≥ : (X : System n) → X ≤ Sys.₁ (id Vec.++ (λ ())) ⟨$⟩ (⊗ {n} {0} (X , discrete 0)) + Sys-unitaryʳ-≥ {n} X = record + { ⇒S = < Id X.S , Const X.S ⊤ₛ tt >ₛ + ; ≗-fₛ = λ i s → cong (X.fₛ ×-⇒ disc.fₛ ∙ Id (Values n) ×-function ε⇒) sym-split-unitaryʳ {s , tt} + ; ≗-fₒ = λ s → sym-++-unitaryʳ {X.fₒ′ s , tt} + } + where + module X = System X + module disc = System (discrete 0) + open ⊗-Util.Shorthands 0ℓ-Setoids-×.monoidal using (ρ⇐) + open Shorthands using (ε⇐; ε⇒) + sym-split-unitaryʳ + : ρ⇐ ≈ Id (Values n) ×-function ε⇐ ∙ splitₛ ∙ Pull.₁ (id Vec.++ (λ ())) + sym-split-unitaryʳ = + 0ℓ-Setoids-×.Equiv.sym + {Values n} + {Values n ×ₛ ⊤ₛ} + {Id (Values n) ×-function ε⇐ ∙ splitₛ ∙ Pull.₁ (id Vec.++ (λ ()))} + {ρ⇐} + (unitaryʳ-inv {n}) + sym-++-unitaryʳ : proj₁ₛ {B = ⊤ₛ {0ℓ}} ≈ Push.₁ (id Vec.++ (λ ())) ∙ ++ₛ ∙ Id (Values n) ×-function Push,++,[].ε + sym-++-unitaryʳ = + 0ℓ-Setoids-×.Equiv.sym + {Values n ×ₛ ⊤ₛ} + {Values n} + {Push.₁ (id Vec.++ (λ ())) ∙ ++ₛ ∙ Id (Values n) ×-function Push,++,[].ε} + {proj₁ₛ} + (Push,++,[].unitaryʳ {n}) + + Sys-braiding-compat-≤ + : (X : System n) + (Y : System m) + → Sys.₁ (+-swap {m} {n}) ⟨$⟩ (⊗ (X , Y)) ≤ ⊗ (Y , X) + Sys-braiding-compat-≤ {n} {m} X Y = record + { ⇒S = swapₛ + ; ≗-fₛ = λ i (s₁ , s₂) → cong (Y.fₛ ×-⇒ X.fₛ ∙ swapₛ) (braiding-compat-inv {m} {n} {i}) {s₂ , s₁} + ; ≗-fₒ = λ (s₁ , s₂) → Push,++,[].braiding-compat {n} {m} {X.fₒ′ s₁ , Y.fₒ′ s₂} + } + where + module X = System X + module Y = System Y + + Sys-braiding-compat-≥ + : (X : System n) + (Y : System m) + → ⊗ (Y , X) ≤ Sys.₁ (+-swap {m} {n}) ⟨$⟩ ⊗ (X , Y) + Sys-braiding-compat-≥ {n} {m} X Y = record + { ⇒S = swapₛ + ; ≗-fₛ = λ i (s₂ , s₁) → cong (X.fₛ ×-⇒ Y.fₛ) (sym-braiding-compat-inv {i}) + ; ≗-fₒ = λ (s₂ , s₁) → sym-braiding-compat-++ {X.fₒ′ s₁ , Y.fₒ′ s₂} + } + where + module X = System X + module Y = System Y + sym-braiding-compat-inv : swapₛ ∙ splitₛ {m} ≈ splitₛ ∙ Pull.₁ (+-swap {m} {n}) + sym-braiding-compat-inv {i} = + 0ℓ-Setoids-×.Equiv.sym + {Values (m + n)} + {Values n ×ₛ Values m} + {splitₛ ∙ Pull.₁ (+-swap {m} {n})} + {swapₛ ∙ splitₛ {m}} + (λ {j} → braiding-compat-inv {m} {n} {j}) {i} + sym-braiding-compat-++ : ++ₛ {m} ∙ swapₛ ≈ Push.₁ (+-swap {m} {n}) ∙ ++ₛ + sym-braiding-compat-++ {i} = + 0ℓ-Setoids-×.Equiv.sym + {Values n ×ₛ Values m} + {Values (m + n)} + {Push.₁ (+-swap {m} {n}) ∙ ++ₛ} + {++ₛ {m} ∙ swapₛ} + (Push,++,[].braiding-compat {n} {m}) + +open Lax.SymmetricMonoidalFunctor + +Sys,⊗,ε : Lax.SymmetricMonoidalFunctor +Sys,⊗,ε .F = Sys +Sys,⊗,ε .isBraidedMonoidal = record + { isMonoidal = record + { ε = Sys-ε + ; ⊗-homo = ⊗-homomorphism + ; associativity = λ { {n} {m} {o} {(X , Y), Z} → ⊗-assoc-≤ X Y Z , ⊗-assoc-≥ X Y Z } + ; unitaryˡ = λ { {n} {_ , X} → Sys-unitaryˡ-≤ X , Sys-unitaryˡ-≥ X } + ; unitaryʳ = λ { {n} {X , _} → Sys-unitaryʳ-≤ X , Sys-unitaryʳ-≥ X } + } + ; braiding-compat = λ { {n} {m} {X , Y} → Sys-braiding-compat-≤ X Y , Sys-braiding-compat-≥ X Y } + } + +module Sys,⊗,ε = Lax.SymmetricMonoidalFunctor Sys,⊗,ε |
