diff options
Diffstat (limited to 'Functor/Monoidal/Instance/Nat')
| -rw-r--r-- | Functor/Monoidal/Instance/Nat/Pull.agda | 192 | ||||
| -rw-r--r-- | Functor/Monoidal/Instance/Nat/Push.agda | 4 | ||||
| -rw-r--r-- | Functor/Monoidal/Instance/Nat/System.agda | 429 |
3 files changed, 623 insertions, 2 deletions
diff --git a/Functor/Monoidal/Instance/Nat/Pull.agda b/Functor/Monoidal/Instance/Nat/Pull.agda new file mode 100644 index 0000000..c2b6958 --- /dev/null +++ b/Functor/Monoidal/Instance/Nat/Pull.agda @@ -0,0 +1,192 @@ +{-# OPTIONS --without-K --safe #-} + +module Functor.Monoidal.Instance.Nat.Pull where + +open import Category.Monoidal.Instance.Nat using (Natop,+,0; Natop-Cartesian) +open import Categories.Category.Instance.Nat using (Nat-Cocartesian) +open import Categories.Category.Instance.SingletonSet using (SingletonSetoid) +open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) +open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; niHelper) +open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian) +open import Categories.Category.BinaryProducts using (module BinaryProducts) +open import Categories.Category.Cartesian using (Cartesian) +open import Categories.Category.Cocartesian using (Cocartesian; BinaryCoproducts) +open import Categories.Category.Product using (_⁂_) +open import Categories.Functor using (_∘F_) +open import Data.Subset.Functional using (Subset) +open import Data.Nat.Base using (ℕ; _+_) +open import Relation.Binary using (Setoid) +open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_) +open import Data.Product.Base using (_,_; _×_; Σ) +open import Data.Vec.Functional using ([]; _++_) +open import Data.Vec.Functional.Properties using (++-cong) +open import Data.Vec.Functional using (Vector; []) +open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_) +open import Functor.Instance.Nat.Pull using (Pull; Pull₁) +open import Level using (0ℓ; Level) + +open import Data.Fin.Permutation using (Permutation; _⟨$⟩ʳ_; _⟨$⟩ˡ_) +open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using (products) +open BinaryProducts products using (-×-) +open Cocartesian Nat-Cocartesian using (module Dual; _+₁_; +-assocʳ; +-comm; +-swap; +₁∘+-swap; i₁; i₂) +open Dual.op-binaryProducts using () renaming (-×- to -+-; assocˡ∘⟨⟩ to []∘assocʳ; swap∘⟨⟩ to []∘swap) + +open import Data.Fin.Base using (Fin; splitAt; join; _↑ˡ_; _↑ʳ_) +open import Data.Fin.Properties using (splitAt-join; splitAt-↑ˡ; splitAt-↑ʳ; join-splitAt) +open import Data.Sum.Base using ([_,_]′; map; map₁; map₂; inj₁; inj₂) +open import Data.Sum.Properties using ([,]-map; [,]-cong; [-,]-cong; [,-]-cong; [,]-∘) +open import Data.Fin.Preimage using (preimage) +open import Function.Base using (_∘_; id) +open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_; module ≡-Reasoning) +open import Data.Bool.Base using (Bool) +open import Data.Setoid using (∣_∣) +open import Data.Circuit.Value using (Value) +open import Data.System.Values Value using (Values) + +open import Category.Instance.Setoids.SymmetricMonoidal {0ℓ} {0ℓ} using (Setoids-×) +open import Categories.Functor.Monoidal.Symmetric Natop,+,0 Setoids-× using (module Strong) +open Strong using (SymmetricMonoidalFunctor) +open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory) + +module Setoids-× = SymmetricMonoidalCategory Setoids-× +import Function.Construct.Constant as Const + +open Func + +module _ where + + open import Categories.Morphism (Setoids-×.U) using (_≅_; module Iso) + open import Data.Unit.Polymorphic using (tt) + open _≅_ + open Iso + + Pull-ε : SingletonSetoid ≅ Values 0 + from Pull-ε = Const.function SingletonSetoid (Values 0) [] + to Pull-ε = Const.function (Values 0) SingletonSetoid tt + isoˡ (iso Pull-ε) = tt + isoʳ (iso Pull-ε) () + +++ₛ : {n m : ℕ} → Values n ×ₛ Values m ⟶ₛ Values (n + m) +to ++ₛ (xs , ys) = xs ++ ys +cong ++ₛ (≗xs , ≗ys) = ++-cong _ _ ≗xs ≗ys + +splitₛ : {n m : ℕ} → Values (n + m) ⟶ₛ Values n ×ₛ Values m +to (splitₛ {n} {m}) v = v ∘ (_↑ˡ m) , v ∘ (n ↑ʳ_) +cong (splitₛ {n} {m}) v₁≋v₂ = v₁≋v₂ ∘ (_↑ˡ m) , v₁≋v₂ ∘ (n ↑ʳ_) + +Pull-++ + : {n n′ m m′ : ℕ} + (f : Fin n → Fin n′) + (g : Fin m → Fin m′) + {xs : ∣ Values n′ ∣} + {ys : ∣ Values m′ ∣} + → (Pull₁ f ⟨$⟩ xs) ++ (Pull₁ g ⟨$⟩ ys) ≗ Pull₁ (f +₁ g) ⟨$⟩ (xs ++ ys) +Pull-++ {n} {n′} {m} {m′} f g {xs} {ys} e = begin + (xs ∘ f ++ ys ∘ g) e ≡⟨ [,]-map (splitAt n e) ⟨ + [ xs , ys ]′ (map f g (splitAt n e)) ≡⟨ ≡.cong [ xs , ys ]′ (splitAt-join n′ m′ (map f g (splitAt n e))) ⟨ + [ xs , ys ]′ (splitAt n′ (join n′ m′ (map f g (splitAt n e)))) ≡⟨ ≡.cong ([ xs , ys ]′ ∘ splitAt n′) ([,]-map (splitAt n e)) ⟩ + [ xs , ys ]′ (splitAt n′ ((f +₁ g) e)) ∎ + where + open ≡-Reasoning + +⊗-homomorphism : NaturalIsomorphism (-×- ∘F (Pull ⁂ Pull)) (Pull ∘F -+-) +⊗-homomorphism = niHelper record + { η = λ (n , m) → ++ₛ {n} {m} + ; η⁻¹ = λ (n , m) → splitₛ {n} {m} + ; commute = λ (f , g) → Pull-++ f g + ; iso = λ (n , m) → record + { isoˡ = λ { {x , y} → (λ i → ≡.cong [ x , y ] (splitAt-↑ˡ n i m)) , (λ i → ≡.cong [ x , y ] (splitAt-↑ʳ n m i)) } + ; isoʳ = λ { {x} i → ≡.trans (≡.sym ([,]-∘ x (splitAt n i))) (≡.cong x (join-splitAt n m i)) } + } + } + where + open import Data.Sum.Base using ([_,_]) + open import Data.Product.Base using (proj₁; proj₂) + +++-↑ˡ + : {n m : ℕ} + (X : ∣ Values n ∣) + (Y : ∣ Values m ∣) + → (X ++ Y) ∘ i₁ ≗ X +++-↑ˡ {n} {m} X Y i = ≡.cong [ X , Y ]′ (splitAt-↑ˡ n i m) + +++-↑ʳ + : {n m : ℕ} + (X : ∣ Values n ∣) + (Y : ∣ Values m ∣) + → (X ++ Y) ∘ i₂ ≗ Y +++-↑ʳ {n} {m} X Y i = ≡.cong [ X , Y ]′ (splitAt-↑ʳ n m i) + +-- TODO move to Data.Vector +++-assoc + : {m n o : ℕ} + (X : ∣ Values m ∣) + (Y : ∣ Values n ∣) + (Z : ∣ Values o ∣) + → ((X ++ Y) ++ Z) ∘ +-assocʳ {m} ≗ X ++ (Y ++ Z) +++-assoc {m} {n} {o} X Y Z i = begin + ((X ++ Y) ++ Z) (+-assocʳ {m} i) ≡⟨⟩ + ((X ++ Y) ++ Z) ([ i₁ ∘ i₁ , _ ]′ (splitAt m i)) ≡⟨ [,]-∘ ((X ++ Y) ++ Z) (splitAt m i) ⟩ + [ ((X ++ Y) ++ Z) ∘ i₁ ∘ i₁ , _ ]′ (splitAt m i) ≡⟨ [-,]-cong (++-↑ˡ (X ++ Y) Z ∘ i₁) (splitAt m i) ⟩ + [ (X ++ Y) ∘ i₁ , _ ]′ (splitAt m i) ≡⟨ [-,]-cong (++-↑ˡ X Y) (splitAt m i) ⟩ + [ X , ((X ++ Y) ++ Z) ∘ [ _ , _ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([,]-∘ ((X ++ Y) ++ Z) ∘ splitAt n) (splitAt m i) ⟩ + [ X , [ (_ ++ Z) ∘ i₁ ∘ i₂ {m} , _ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([-,]-cong (++-↑ˡ (X ++ Y) Z ∘ i₂) ∘ splitAt n) (splitAt m i) ⟩ + [ X , [ (X ++ Y) ∘ i₂ , _ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([-,]-cong (++-↑ʳ X Y) ∘ splitAt n) (splitAt m i) ⟩ + [ X , [ Y , ((X ++ Y) ++ Z) ∘ i₂ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([,-]-cong (++-↑ʳ (X ++ Y) Z) ∘ splitAt n) (splitAt m i) ⟩ + [ X , [ Y , Z ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨⟩ + (X ++ (Y ++ Z)) i ∎ + where + open Bool + open Fin + open ≡-Reasoning + +-- TODO also Data.Vector +Pull-unitaryˡ + : {n : ℕ} + (X : ∣ Values n ∣) + → (X ++ []) ∘ i₁ ≗ X +Pull-unitaryˡ {n} X i = begin + [ X , [] ]′ (splitAt _ (i ↑ˡ 0)) ≡⟨ ≡.cong ([ X , [] ]′) (splitAt-↑ˡ n i 0) ⟩ + [ X , [] ]′ (inj₁ i) ≡⟨⟩ + X i ∎ + where + open ≡-Reasoning + +open import Function.Bundles using (Inverse) +open import Categories.Category.Instance.Nat using (Nat) +open import Categories.Morphism Nat using (_≅_) +Pull-swap + : {n m : ℕ} + (X : ∣ Values n ∣) + (Y : ∣ Values m ∣) + → (X ++ Y) ∘ (+-swap {n}) ≗ Y ++ X +Pull-swap {n} {m} X Y i = begin + ((X ++ Y) ∘ +-swap {n}) i ≡⟨ [,]-∘ (X ++ Y) (splitAt m i) ⟩ + [ (X ++ Y) ∘ i₂ , (X ++ Y) ∘ i₁ ]′ (splitAt m i) ≡⟨ [-,]-cong (++-↑ʳ X Y) (splitAt m i) ⟩ + [ Y , (X ++ Y) ∘ i₁ ]′ (splitAt m i) ≡⟨ [,-]-cong (++-↑ˡ X Y) (splitAt m i) ⟩ + [ Y , X ]′ (splitAt m i) ≡⟨⟩ + (Y ++ X) i ∎ + where + open ≡-Reasoning + open Inverse + module +-swap = _≅_ (+-comm {m} {n}) + n+m↔m+n : Permutation (n + m) (m + n) + n+m↔m+n .to = +-swap.to + n+m↔m+n .from = +-swap.from + n+m↔m+n .to-cong ≡.refl = ≡.refl + n+m↔m+n .from-cong ≡.refl = ≡.refl + n+m↔m+n .inverse = (λ { ≡.refl → +-swap.isoˡ _ }) , (λ { ≡.refl → +-swap.isoʳ _ }) + +open SymmetricMonoidalFunctor +Pull,++,[] : SymmetricMonoidalFunctor +Pull,++,[] .F = Pull +Pull,++,[] .isBraidedMonoidal = record + { isStrongMonoidal = record + { ε = Pull-ε + ; ⊗-homo = ⊗-homomorphism + ; associativity = λ { {m} {n} {o} {(X , Y) , Z} i → ++-assoc X Y Z i } + ; unitaryˡ = λ _ → ≡.refl + ; unitaryʳ = λ { {n} {X , _} i → Pull-unitaryˡ X i } + } + ; braiding-compat = λ { {n} {m} {X , Y} i → Pull-swap X Y i } + } diff --git a/Functor/Monoidal/Instance/Nat/Push.agda b/Functor/Monoidal/Instance/Nat/Push.agda index 2ccfc27..30ed745 100644 --- a/Functor/Monoidal/Instance/Nat/Push.agda +++ b/Functor/Monoidal/Instance/Nat/Push.agda @@ -9,7 +9,7 @@ open import Function.Base using (_∘_; case_of_; _$_; id) open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_) open import Level using (0ℓ; Level) open import Relation.Binary using (Rel; Setoid) -open import Functor.Instance.Nat.Push using (Values; Push; Push₁; Push-identity) +open import Functor.Instance.Nat.Push using (Push; Push₁; Push-identity) open import Categories.Category.Instance.SingletonSet using (SingletonSetoid) open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) open import Data.Vec.Functional using (Vector; []; _++_; head; tail) @@ -52,7 +52,7 @@ open import Data.Fin.Permutation using (Permutation; _⟨$⟩ʳ_; _⟨$⟩ˡ_) open Dual.op-binaryProducts using () renaming (assocˡ∘⟨⟩ to []∘assocʳ; swap∘⟨⟩ to []∘swap) open import Relation.Nullary.Decidable using (does; does-⇔; dec-false) - +open import Data.System.Values Value using (Values) open Func Push-ε : SingletonSetoid {0ℓ} {0ℓ} ⟶ₛ Values 0 diff --git a/Functor/Monoidal/Instance/Nat/System.agda b/Functor/Monoidal/Instance/Nat/System.agda new file mode 100644 index 0000000..1b3bb34 --- /dev/null +++ b/Functor/Monoidal/Instance/Nat/System.agda @@ -0,0 +1,429 @@ +{-# OPTIONS --without-K --safe #-} + +open import Level using (Level; 0ℓ; suc) + +module Functor.Monoidal.Instance.Nat.System {ℓ : Level} where + +open import Function.Construct.Identity using () renaming (function to Id) +import Function.Construct.Constant as Const + +open import Category.Monoidal.Instance.Nat using (Nat,+,0; Natop,+,0) +open import Categories.Category.Instance.Nat using (Natop) +open import Category.Instance.Setoids.SymmetricMonoidal {suc ℓ} {ℓ} using (Setoids-×) +open import Categories.Category.Instance.SingletonSet using (SingletonSetoid) +open import Data.Circuit.Value using (Value) +open import Data.Setoid using (_⇒ₛ_; ∣_∣) +open import Data.System {ℓ} using (Systemₛ; System; ≤-System) +open import Data.System.Values Value using (Values; _≋_; module ≋) +open import Data.Unit.Polymorphic using (⊤; tt) +open import Data.Vec.Functional using ([]) +open import Relation.Binary using (Setoid) +open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_) +open import Functor.Instance.Nat.System {ℓ} using (Sys; map) +open import Function.Base using (_∘_) +open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_) +open import Function.Construct.Setoid using (setoid) +open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory; BraidedMonoidalCategory) + +open Func + +module _ where + + open System + + discrete : System 0 + discrete .S = SingletonSetoid + discrete .fₛ = Const.function (Values 0) (SingletonSetoid ⇒ₛ SingletonSetoid) (Id SingletonSetoid) + discrete .fₒ = Const.function SingletonSetoid (Values 0) [] + +Sys-ε : SingletonSetoid {suc ℓ} {ℓ} ⟶ₛ Systemₛ 0 +Sys-ε = Const.function SingletonSetoid (Systemₛ 0) discrete + +open import Categories.Category.Cartesian using (Cartesian) +open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian) +open Cartesian (Setoids-Cartesian {suc ℓ} {ℓ}) using (products) +open import Categories.Category.BinaryProducts using (module BinaryProducts) +open BinaryProducts products using (-×-) +open import Categories.Functor using (_∘F_) +open import Categories.Category.Product using (_⁂_) + +open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) +open import Categories.Category.Cocartesian using (Cocartesian) +open import Categories.Category.Instance.Nat using (Nat-Cocartesian) +open Cocartesian Nat-Cocartesian using (module Dual; i₁; i₂; -+-; _+₁_; +-assocʳ; +-assocˡ; +-comm; +-swap; +₁∘+-swap; +₁∘i₁; +₁∘i₂) +open Dual.op-binaryProducts using () renaming (×-assoc to +-assoc) +open import Data.Product.Base using (_,_; dmap) renaming (map to ×-map) + +open import Categories.Functor using (Functor) +open import Categories.Category.Product using (Product) +open import Categories.Category.Instance.Nat using (Nat) +open import Categories.Category.Instance.Setoids using (Setoids) + +open import Data.Fin using (_↑ˡ_; _↑ʳ_) +open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_) +open import Data.Nat using (ℕ; _+_) +open import Data.Product.Base using (_×_) + +private + + variable + n m o : ℕ + c₁ c₂ c₃ c₄ c₅ c₆ : Level + ℓ₁ ℓ₂ ℓ₃ ℓ₄ ℓ₅ ℓ₆ : Level + +open import Functor.Monoidal.Instance.Nat.Push using (++ₛ; Push,++,[]; Push-++; Push-assoc) +open import Functor.Monoidal.Instance.Nat.Pull using (splitₛ; Pull,++,[]; ++-assoc; Pull-unitaryˡ; Pull-ε) +open import Functor.Instance.Nat.Pull using (Pull; Pull₁; Pull-resp-≈; Pull-identity) +open import Functor.Instance.Nat.Push using (Push₁; Push-identity) + +open import Data.Product.Function.NonDependent.Setoid using (_×-function_; proj₁ₛ; proj₂ₛ; <_,_>ₛ; swapₛ) + +_×-⇒_ + : {A : Setoid c₁ ℓ₁} + {B : Setoid c₂ ℓ₂} + {C : Setoid c₃ ℓ₃} + {D : Setoid c₄ ℓ₄} + {E : Setoid c₅ ℓ₅} + {F : Setoid c₆ ℓ₆} + → A ⟶ₛ B ⇒ₛ C + → D ⟶ₛ E ⇒ₛ F + → A ×ₛ D ⟶ₛ B ×ₛ E ⇒ₛ C ×ₛ F +_×-⇒_ f g .to (x , y) = to f x ×-function to g y +_×-⇒_ f g .cong (x , y) = cong f x , cong g y + +open import Function.Construct.Setoid using (_∙_) + +⊗ : System n × System m → System (n + m) +⊗ {n} {m} (S₁ , S₂) = record + { S = S₁.S ×ₛ S₂.S + ; fₛ = S₁.fₛ ×-⇒ S₂.fₛ ∙ splitₛ + ; fₒ = ++ₛ ∙ S₁.fₒ ×-function S₂.fₒ + } + where + module S₁ = System S₁ + module S₂ = System S₂ + +open import Category.Instance.Setoids.SymmetricMonoidal {0ℓ} {0ℓ} using () renaming (Setoids-× to 0ℓ-Setoids-×) +module 0ℓ-Setoids-× = SymmetricMonoidalCategory 0ℓ-Setoids-× renaming (braidedMonoidalCategory to B) +open module ⇒ₛ {A} {B} = Setoid (setoid {0ℓ} {0ℓ} {0ℓ} {0ℓ} A B) using (_≈_) +open import Categories.Functor.Monoidal.Symmetric Natop,+,0 0ℓ-Setoids-× using (module Strong) +open SymmetricMonoidalCategory using () renaming (braidedMonoidalCategory to B) +module Natop,+,0 = SymmetricMonoidalCategory Natop,+,0 renaming (braidedMonoidalCategory to B) +open import Categories.Functor.Monoidal.Braided Natop,+,0.B 0ℓ-Setoids-×.B using () renaming (module Strong to StrongB) +open Strong using (SymmetricMonoidalFunctor) +open StrongB using (BraidedMonoidalFunctor) + +opaque + + _~_ : {A B : Setoid 0ℓ 0ℓ} → Func A B → Func A B → Set + _~_ = _≈_ + infix 4 _~_ + + sym-~ + : {A B : Setoid 0ℓ 0ℓ} + {x y : Func A B} + → x ~ y + → y ~ x + sym-~ {A} {B} {x} {y} = 0ℓ-Setoids-×.Equiv.sym {A} {B} {x} {y} + +⊗ₛ + : {n m : ℕ} + → Func (Systemₛ n ×ₛ Systemₛ m) (Systemₛ (n + m)) +⊗ₛ .to = ⊗ +⊗ₛ {n} {m} .cong {a , b} {c , d} ((a≤c , c≤a) , (b≤d , d≤b)) = left , right + where + module a = System a + module b = System b + module c = System c + module d = System d + open ≤-System + module a≤c = ≤-System a≤c + module b≤d = ≤-System b≤d + module c≤a = ≤-System c≤a + module d≤b = ≤-System d≤b + + open Setoid + open System + + open import Data.Product.Base using (dmap) + open import Data.Vec.Functional.Properties using (++-cong) + left : ≤-System (⊗ₛ .to (a , b)) (⊗ₛ .to (c , d)) + left = record + { ⇒S = a≤c.⇒S ×-function b≤d.⇒S + ; ≗-fₛ = λ i → dmap (a≤c.≗-fₛ (i ∘ i₁)) (b≤d.≗-fₛ (i ∘ i₂)) + ; ≗-fₒ = λ (s₁ , s₂) → ++-cong (a.fₒ′ s₁) (c.fₒ′ (a≤c.⇒S ⟨$⟩ s₁)) (a≤c.≗-fₒ s₁) (b≤d.≗-fₒ s₂) + } + + right : ≤-System (⊗ₛ .to (c , d)) (⊗ₛ .to (a , b)) + right = record + { ⇒S = c≤a.⇒S ×-function d≤b.⇒S + ; ≗-fₛ = λ i → dmap (c≤a.≗-fₛ (i ∘ i₁)) (d≤b.≗-fₛ (i ∘ i₂)) + ; ≗-fₒ = λ (s₁ , s₂) → ++-cong (c.fₒ′ s₁) (a.fₒ′ (c≤a.⇒S ⟨$⟩ s₁)) (c≤a.≗-fₒ s₁) (d≤b.≗-fₒ s₂) + } + +open import Data.Fin using (Fin) + +System-⊗-≤ + : {n n′ m m′ : ℕ} + (X : System n) + (Y : System m) + (f : Fin n → Fin n′) + (g : Fin m → Fin m′) + → ≤-System (⊗ (map f X , map g Y)) (map (f +₁ g) (⊗ (X , Y))) +System-⊗-≤ {n} {n′} {m} {m′} X Y f g = record + { ⇒S = Id (X.S ×ₛ Y.S) + ; ≗-fₛ = λ i _ → cong X.fₛ (≋.sym (≡.cong i ∘ +₁∘i₁)) , cong Y.fₛ (≋.sym (≡.cong i ∘ +₁∘i₂ {f = f})) + ; ≗-fₒ = λ (s₁ , s₂) → Push-++ f g (X.fₒ′ s₁) (Y.fₒ′ s₂) + } + where + module X = System X + module Y = System Y + +System-⊗-≥ + : {n n′ m m′ : ℕ} + (X : System n) + (Y : System m) + (f : Fin n → Fin n′) + (g : Fin m → Fin m′) + → ≤-System (map (f +₁ g) (⊗ (X , Y))) (⊗ (map f X , map g Y)) +System-⊗-≥ {n} {n′} {m} {m′} X Y f g = record + { ⇒S = Id (X.S ×ₛ Y.S) + -- ; ≗-fₛ = λ i _ → cong X.fₛ (≡.cong i ∘ +₁∘i₁) , cong Y.fₛ (≡.cong i ∘ +₁∘i₂ {f = f}) + ; ≗-fₛ = λ i _ → cong (X.fₛ ×-⇒ Y.fₛ) (Pull-resp-≈ (+₁∘i₁ {n′}) {i} , Pull-resp-≈ (+₁∘i₂ {f = f}) {i}) + ; ≗-fₒ = λ (s₁ , s₂) → ≋.sym (Push-++ f g (X.fₒ′ s₁) (Y.fₒ′ s₂)) + } + where + module X = System X + module Y = System Y + import Relation.Binary.PropositionalEquality as ≡ + +⊗-homomorphism : NaturalTransformation (-×- ∘F (Sys ⁂ Sys)) (Sys ∘F -+-) +⊗-homomorphism = ntHelper record + { η = λ (n , m) → ⊗ₛ {n} {m} + ; commute = λ { (f , g) {X , Y} → System-⊗-≤ X Y f g , System-⊗-≥ X Y f g } + } + +⊗-assoc-≤ + : (X : System n) + (Y : System m) + (Z : System o) + → ≤-System (map (+-assocˡ {n}) (⊗ (⊗ (X , Y) , Z))) (⊗ (X , ⊗ (Y , Z))) +⊗-assoc-≤ {n} {m} {o} X Y Z = record + { ⇒S = ×-assocˡ + ; ≗-fₛ = λ i ((s₁ , s₂) , s₃) → cong (X.fₛ ×-⇒ (Y.fₛ ×-⇒ Z.fₛ) ∙ assocˡ) (associativity-inv {x = i}) {s₁ , s₂ , s₃} + ; ≗-fₒ = λ ((s₁ , s₂) , s₃) → Push-assoc (X.fₒ′ s₁) (Y.fₒ′ s₂) (Z.fₒ′ s₃) + } + where + open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using () renaming (products to 0ℓ-products) + open BinaryProducts 0ℓ-products using (assocˡ) + open Cartesian (Setoids-Cartesian {ℓ} {ℓ}) using () renaming (products to prod) + open BinaryProducts prod using () renaming (assocˡ to ×-assocˡ) + module Pull,++,[] = SymmetricMonoidalFunctor Pull,++,[] + module Pull,++,[]B = BraidedMonoidalFunctor (record { isBraidedMonoidal = Pull,++,[].isBraidedMonoidal }) + + open import Functor.Monoidal.Braided.Strong.Properties Pull,++,[].braidedMonoidalFunctor using (associativity-inv) + + module X = System X + module Y = System Y + module Z = System Z + +⊗-assoc-≥ + : (X : System n) + (Y : System m) + (Z : System o) + → ≤-System (⊗ (X , ⊗ (Y , Z))) (map (+-assocˡ {n}) (⊗ (⊗ (X , Y) , Z))) +⊗-assoc-≥ {n} {m} {o} X Y Z = record + { ⇒S = ×-assocʳ + ; ≗-fₛ = λ i (s₁ , s₂ , s₃) → cong ((X.fₛ ×-⇒ Y.fₛ) ×-⇒ Z.fₛ) (sym-split-assoc {i}) {(s₁ , s₂) , s₃} + ; ≗-fₒ = λ (s₁ , s₂ , s₃) → sym-++-assoc {(X.fₒ′ s₁ , Y.fₒ′ s₂) , Z.fₒ′ s₃} + } + where + open Cartesian (Setoids-Cartesian {ℓ} {ℓ}) using () renaming (products to prod) + open BinaryProducts prod using () renaming (assocʳ to ×-assocʳ) + open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using () renaming (products to 0ℓ-products) + open BinaryProducts 0ℓ-products using (×-assoc; assocˡ; assocʳ) + + open import Categories.Morphism.Reasoning 0ℓ-Setoids-×.U using (switch-tofromʳ) + open import Categories.Functor.Monoidal.Symmetric using (module Lax) + module Lax₂ = Lax Nat,+,0 0ℓ-Setoids-× + module Pull,++,[] = Strong.SymmetricMonoidalFunctor Pull,++,[] + open import Functor.Monoidal.Strong.Properties Pull,++,[].monoidalFunctor using (associativity-inv) + module Push,++,[] = Lax₂.SymmetricMonoidalFunctor Push,++,[] + + +-assocℓ : Fin ((n + m) + o) → Fin (n + (m + o)) + +-assocℓ = +-assocˡ {n} {m} {o} + + opaque + + unfolding _~_ + + associativity-inv-~ : splitₛ ×-function Id (Values o) ∙ splitₛ ∙ Pull₁ +-assocℓ ~ assocʳ ∙ Id (Values n) ×-function splitₛ ∙ splitₛ + associativity-inv-~ {i} = associativity-inv {n} {m} {o} {i} + + associativity-~ : Push₁ (+-assocˡ {n} {m} {o}) ∙ ++ₛ ∙ ++ₛ ×-function Id (Values o) ~ ++ₛ ∙ Id (Values n) ×-function ++ₛ ∙ assocˡ + associativity-~ {i} = Push,++,[].associativity {n} {m} {o} {i} + + sym-split-assoc-~ : assocʳ ∙ Id (Values n) ×-function splitₛ ∙ splitₛ ~ splitₛ ×-function Id (Values o) ∙ splitₛ ∙ Pull₁ +-assocℓ + sym-split-assoc-~ = sym-~ associativity-inv-~ + + sym-++-assoc-~ : ++ₛ ∙ Id (Values n) ×-function ++ₛ ∙ assocˡ ~ Push₁ (+-assocˡ {n} {m} {o}) ∙ ++ₛ ∙ ++ₛ ×-function Id (Values o) + sym-++-assoc-~ = sym-~ associativity-~ + + opaque + + unfolding _~_ + + sym-split-assoc : assocʳ ∙ Id (Values n) ×-function splitₛ ∙ splitₛ ≈ splitₛ ×-function Id (Values o) ∙ splitₛ ∙ Pull₁ +-assocℓ + sym-split-assoc {i} = sym-split-assoc-~ {i} + + sym-++-assoc : ++ₛ ∙ Id (Values n) ×-function ++ₛ ∙ assocˡ ≈ Push₁ (+-assocˡ {n} {m} {o}) ∙ ++ₛ ∙ ++ₛ ×-function Id (Values o) + sym-++-assoc {i} = sym-++-assoc-~ + + module X = System X + module Y = System Y + module Z = System Z + +open import Function.Base using (id) +Sys-unitaryˡ-≤ : (X : System n) → ≤-System (map id (⊗ (discrete , X))) X +Sys-unitaryˡ-≤ X = record + { ⇒S = proj₂ₛ + ; ≗-fₛ = λ i (_ , s) → X.refl + ; ≗-fₒ = λ (_ , s) → Push-identity + } + where + module X = System X + +Sys-unitaryˡ-≥ : (X : System n) → ≤-System X (map id (⊗ (discrete , X))) +Sys-unitaryˡ-≥ {n} X = record + { ⇒S = < Const.function X.S SingletonSetoid tt , Id X.S >ₛ + ; ≗-fₛ = λ i s → tt , X.refl + ; ≗-fₒ = λ s → Equiv.sym {x = Push₁ id} {Id (Values n)} Push-identity + } + where + module X = System X + open SymmetricMonoidalCategory 0ℓ-Setoids-× using (module Equiv) + +open import Data.Vec.Functional using (_++_) + +Sys-unitaryʳ-≤ : (X : System n) → ≤-System (map (id ++ (λ ())) (⊗ {n} {0} (X , discrete))) X +Sys-unitaryʳ-≤ {n} X = record + { ⇒S = proj₁ₛ + ; ≗-fₛ = λ i (s , _) → cong (X.fₛ ∙ proj₁ₛ {B = SingletonSetoid {0ℓ}}) (unitaryʳ-inv {n} {i}) + ; ≗-fₒ = λ (s , _) → Push,++,[].unitaryʳ {n} {X.fₒ′ s , tt} + } + where + module X = System X + module Pull,++,[] = Strong.SymmetricMonoidalFunctor Pull,++,[] + open import Functor.Monoidal.Strong.Properties Pull,++,[].monoidalFunctor using (unitaryʳ-inv; module Shorthands) + open import Categories.Functor.Monoidal.Symmetric Nat,+,0 0ℓ-Setoids-× using (module Lax) + module Push,++,[] = Lax.SymmetricMonoidalFunctor Push,++,[] + +Sys-unitaryʳ-≥ : (X : System n) → ≤-System X (map (id ++ (λ ())) (⊗ {n} {0} (X , discrete))) +Sys-unitaryʳ-≥ {n} X = record + { ⇒S = < Id X.S , Const.function X.S SingletonSetoid tt >ₛ + ; ≗-fₛ = λ i s → + cong + (X.fₛ ×-⇒ Const.function (Values 0) (SingletonSetoid ⇒ₛ SingletonSetoid) (Id (SingletonSetoid {ℓ} {ℓ})) ∙ Id (Values n) ×-function ε⇒) + sym-split-unitaryʳ + {s , tt} + ; ≗-fₒ = λ s → sym-++-unitaryʳ {X.fₒ′ s , tt} + } + where + module X = System X + module Pull,++,[] = Strong.SymmetricMonoidalFunctor Pull,++,[] + open import Functor.Monoidal.Strong.Properties Pull,++,[].monoidalFunctor using (unitaryʳ-inv; module Shorthands) + open import Categories.Functor.Monoidal.Symmetric Nat,+,0 0ℓ-Setoids-× using (module Lax) + module Push,++,[] = Lax.SymmetricMonoidalFunctor Push,++,[] + import Categories.Category.Monoidal.Utilities 0ℓ-Setoids-×.monoidal as ⊗-Util + + open ⊗-Util.Shorthands using (ρ⇐) + open Shorthands using (ε⇐; ε⇒) + + sym-split-unitaryʳ + : ρ⇐ ≈ Id (Values n) ×-function ε⇐ ∙ splitₛ ∙ Pull₁ (id ++ (λ ())) + sym-split-unitaryʳ = + 0ℓ-Setoids-×.Equiv.sym + {Values n} + {Values n ×ₛ SingletonSetoid} + {Id (Values n) ×-function ε⇐ ∙ splitₛ ∙ Pull₁ (id ++ (λ ()))} + {ρ⇐} + (unitaryʳ-inv {n}) + + sym-++-unitaryʳ : proj₁ₛ {B = SingletonSetoid {0ℓ} {0ℓ}} ≈ Push₁ (id ++ (λ ())) ∙ ++ₛ ∙ Id (Values n) ×-function ε⇒ + sym-++-unitaryʳ = + 0ℓ-Setoids-×.Equiv.sym + {Values n ×ₛ SingletonSetoid} + {Values n} + {Push₁ (id ++ (λ ())) ∙ ++ₛ ∙ Id (Values n) ×-function ε⇒} + {proj₁ₛ} + (Push,++,[].unitaryʳ {n}) + +Sys-braiding-compat-≤ + : (X : System n) + (Y : System m) + → ≤-System (map (+-swap {m} {n}) (⊗ (X , Y))) (⊗ (Y , X)) +Sys-braiding-compat-≤ {n} {m} X Y = record + { ⇒S = swapₛ + ; ≗-fₛ = λ i (s₁ , s₂) → cong (Y.fₛ ×-⇒ X.fₛ ∙ swapₛ) (braiding-compat-inv {m} {n} {i}) {s₂ , s₁} + ; ≗-fₒ = λ (s₁ , s₂) → Push,++,[].braiding-compat {n} {m} {X.fₒ′ s₁ , Y.fₒ′ s₂} + } + where + module X = System X + module Y = System Y + module Pull,++,[] = SymmetricMonoidalFunctor Pull,++,[] + module Pull,++,[]B = BraidedMonoidalFunctor (record { isBraidedMonoidal = Pull,++,[].isBraidedMonoidal }) + open import Functor.Monoidal.Braided.Strong.Properties Pull,++,[].braidedMonoidalFunctor using (braiding-compat-inv) + open import Categories.Functor.Monoidal.Symmetric Nat,+,0 0ℓ-Setoids-× using (module Lax) + module Push,++,[] = Lax.SymmetricMonoidalFunctor Push,++,[] + +Sys-braiding-compat-≥ + : (X : System n) + (Y : System m) + → ≤-System (⊗ (Y , X)) (map (+-swap {m} {n}) (⊗ (X , Y))) +Sys-braiding-compat-≥ {n} {m} X Y = record + { ⇒S = swapₛ + ; ≗-fₛ = λ i (s₂ , s₁) → cong (X.fₛ ×-⇒ Y.fₛ) (sym-braiding-compat-inv {i}) + ; ≗-fₒ = λ (s₂ , s₁) → sym-braiding-compat-++ {X.fₒ′ s₁ , Y.fₒ′ s₂} + } + where + module X = System X + module Y = System Y + module Pull,++,[] = SymmetricMonoidalFunctor Pull,++,[] + module Pull,++,[]B = BraidedMonoidalFunctor (record { isBraidedMonoidal = Pull,++,[].isBraidedMonoidal }) + open import Functor.Monoidal.Braided.Strong.Properties Pull,++,[].braidedMonoidalFunctor using (braiding-compat-inv) + open import Categories.Functor.Monoidal.Symmetric Nat,+,0 0ℓ-Setoids-× using (module Lax) + module Push,++,[] = Lax.SymmetricMonoidalFunctor Push,++,[] + + sym-braiding-compat-inv : swapₛ ∙ splitₛ {m} ≈ splitₛ ∙ Pull₁ (+-swap {m} {n}) + sym-braiding-compat-inv {i} = + 0ℓ-Setoids-×.Equiv.sym + {Values (m + n)} + {Values n ×ₛ Values m} + {splitₛ ∙ Pull₁ (+-swap {m} {n})} + {swapₛ ∙ splitₛ {m}} + (λ {j} → braiding-compat-inv {m} {n} {j}) {i} + + sym-braiding-compat-++ : ++ₛ {m} ∙ swapₛ ≈ Push₁ (+-swap {m} {n}) ∙ ++ₛ + sym-braiding-compat-++ {i} = + 0ℓ-Setoids-×.Equiv.sym + {Values n ×ₛ Values m} + {Values (m + n)} + {Push₁ (+-swap {m} {n}) ∙ ++ₛ} + {++ₛ {m} ∙ swapₛ} + (Push,++,[].braiding-compat {n} {m}) + +open import Categories.Functor.Monoidal.Symmetric Nat,+,0 Setoids-× using (module Lax) +open Lax.SymmetricMonoidalFunctor + +Sys,⊗,ε : Lax.SymmetricMonoidalFunctor +Sys,⊗,ε .F = Sys +Sys,⊗,ε .isBraidedMonoidal = record + { isMonoidal = record + { ε = Sys-ε + ; ⊗-homo = ⊗-homomorphism + ; associativity = λ { {n} {m} {o} {(X , Y), Z} → ⊗-assoc-≤ X Y Z , ⊗-assoc-≥ X Y Z } + ; unitaryˡ = λ { {n} {_ , X} → Sys-unitaryˡ-≤ X , Sys-unitaryˡ-≥ X } + ; unitaryʳ = λ { {n} {X , _} → Sys-unitaryʳ-≤ X , Sys-unitaryʳ-≥ X } + } + ; braiding-compat = λ { {n} {m} {X , Y} → Sys-braiding-compat-≤ X Y , Sys-braiding-compat-≥ X Y } + } |
