aboutsummaryrefslogtreecommitdiff
path: root/NaturalTransformation/Instance/EmptyList.agda
diff options
context:
space:
mode:
Diffstat (limited to 'NaturalTransformation/Instance/EmptyList.agda')
-rw-r--r--NaturalTransformation/Instance/EmptyList.agda32
1 files changed, 22 insertions, 10 deletions
diff --git a/NaturalTransformation/Instance/EmptyList.agda b/NaturalTransformation/Instance/EmptyList.agda
index 9a558a2..0e069d2 100644
--- a/NaturalTransformation/Instance/EmptyList.agda
+++ b/NaturalTransformation/Instance/EmptyList.agda
@@ -1,23 +1,35 @@
{-# OPTIONS --without-K --safe #-}
-open import Level using (Level)
+open import Level using (Level; _⊔_)
module NaturalTransformation.Instance.EmptyList {c ℓ : Level} where
-import Function.Construct.Constant as Const
-
-open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
+open import Categories.Category.Instance.SingletonSet using () renaming (SingletonSetoid to ⊤ₛ)
open import Categories.Functor using (Functor)
-open import Categories.Category.Instance.SingletonSet using (SingletonSetoid)
open import Categories.Functor.Construction.Constant using (const)
-open import Data.List using ([])
+open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
+open import Data.Opaque.List using (Listₛ; []ₛ; mapₛ)
+open import Data.Setoid using (_⇒ₛ_)
+open import Function using (_⟶ₛ_)
+open import Function.Construct.Constant using () renaming (function to Const)
+open import Function.Construct.Setoid using (_∙_)
open import Functor.Instance.List {c} {ℓ} using (List)
open import Relation.Binary using (Setoid)
-module List = Functor List
+opaque
+
+ unfolding []ₛ
+
+ map-[]ₛ : {A B : Setoid c ℓ}
+ → (f : A ⟶ₛ B)
+ → (open Setoid (⊤ₛ ⇒ₛ Listₛ B))
+ → []ₛ ≈ mapₛ f ∙ []ₛ
+ map-[]ₛ {_} {B} f = refl
+ where
+ open Setoid (List.₀ B)
-⊤⇒[] : NaturalTransformation (const SingletonSetoid) List
+⊤⇒[] : NaturalTransformation (const ⊤ₛ) List
⊤⇒[] = ntHelper record
- { η = λ X → Const.function SingletonSetoid (List.₀ X) []
- ; commute = λ {_} {B} f → Setoid.refl (List.₀ B)
+ { η = λ X → []ₛ
+ ; commute = map-[]ₛ
}