| Age | Commit message (Collapse) | Author | |
|---|---|---|---|
| 2025-11-05 | Add Circ symmetric monoidal functor | Jacques Comeaux | |
| 2025-11-05 | Adjust universe levels | Jacques Comeaux | |
| 2025-11-05 | Add multiset-of construction | Jacques Comeaux | |
| 2025-11-05 | Add list-of construction for monoidal functors | Jacques Comeaux | |
| If F is a functor from a cocartesian category into Set, then the functor taking n to List (F n) can be made into a monoidal functor. More generally, Set can be replaced with any monoidal category D that has a free monoid functor Free : D -> Monoids[D] | |||
| 2025-11-03 | Remove unnecessary import | Jacques Comeaux | |
| 2025-10-28 | Add symmetric monoidal structure to Pull and System | Jacques Comeaux | |
| 2025-10-27 | Add inverted unitary rules for strong monoidal functors | Jacques Comeaux | |
| 2025-10-26 | Add inverted associativity for strong monoidal functors | Jacques Comeaux | |
| 2025-10-22 | Add symmetric monoidal structure to Push functor | Jacques Comeaux | |
| 2025-10-16 | Add Preimage symmetric monoidal functor | Jacques Comeaux | |
