| Age | Commit message (Collapse) | Author | |
|---|---|---|---|
| 2025-11-09 | Clean up System functors | Jacques Comeaux | |
| 2025-11-05 | Add Circ symmetric monoidal functor | Jacques Comeaux | |
| 2025-11-05 | Adjust universe levels | Jacques Comeaux | |
| 2025-11-05 | Add multiset functor | Jacques Comeaux | |
| 2025-11-05 | Add free commutaive monoid functor | Jacques Comeaux | |
| 2025-11-05 | Add multiset-of construction | Jacques Comeaux | |
| 2025-11-05 | Add list-of construction for monoidal functors | Jacques Comeaux | |
| If F is a functor from a cocartesian category into Set, then the functor taking n to List (F n) can be made into a monoidal functor. More generally, Set can be replaced with any monoidal category D that has a free monoid functor Free : D -> Monoids[D] | |||
| 2025-11-03 | Remove unnecessary import | Jacques Comeaux | |
| 2025-11-03 | Use permutation for equivalence of hypergraphs | Jacques Comeaux | |
| 2025-10-30 | Add Circ functor | Jacques Comeaux | |
| 2025-10-30 | Add free functor from setoids to monoids in setoids | Jacques Comeaux | |
| 2025-10-29 | Add Edge functor | Jacques Comeaux | |
| 2025-10-29 | Add List functor | Jacques Comeaux | |
| 2025-10-28 | Split System into smaller modules | Jacques Comeaux | |
| 2025-10-28 | Add symmetric monoidal structure to Pull and System | Jacques Comeaux | |
| 2025-10-27 | Add inverted unitary rules for strong monoidal functors | Jacques Comeaux | |
| 2025-10-26 | Add inverted associativity for strong monoidal functors | Jacques Comeaux | |
| 2025-10-22 | Simplify System definition and add System functor | Jacques Comeaux | |
| 2025-10-22 | Add symmetric monoidal structure to Push functor | Jacques Comeaux | |
| 2025-10-16 | Add Preimage symmetric monoidal functor | Jacques Comeaux | |
| 2025-10-15 | Improve terminology in comment | Jacques Comeaux | |
| 2025-10-10 | Add Push and Pull functors | Jacques Comeaux | |
| 2025-04-23 | Category of decorated cospans is symmetric monoidal | Jacques Comeaux | |
| 2025-02-08 | Define tensor product of decorated cospans | Jacques Comeaux | |
| 2025-02-03 | Show category of cospans is monoidal | Jacques Comeaux | |
| 2025-02-03 | Add category of finitely-cocomplete categories | Jacques Comeaux | |
| - Objects are categories with all finite colimits - Morphisms are functors preserving finite colimits (i.e. right exact) | |||
