aboutsummaryrefslogtreecommitdiff
path: root/Functor
AgeCommit message (Collapse)Author
2025-11-05Add list-of construction for monoidal functorsJacques Comeaux
If F is a functor from a cocartesian category into Set, then the functor taking n to List (F n) can be made into a monoidal functor. More generally, Set can be replaced with any monoidal category D that has a free monoid functor Free : D -> Monoids[D]
2025-11-03Remove unnecessary importJacques Comeaux
2025-11-03Use permutation for equivalence of hypergraphsJacques Comeaux
2025-10-30Add Circ functorJacques Comeaux
2025-10-30Add free functor from setoids to monoids in setoidsJacques Comeaux
2025-10-29Add Edge functorJacques Comeaux
2025-10-29Add List functorJacques Comeaux
2025-10-28Split System into smaller modulesJacques Comeaux
2025-10-28Add symmetric monoidal structure to Pull and SystemJacques Comeaux
2025-10-27Add inverted unitary rules for strong monoidal functorsJacques Comeaux
2025-10-26Add inverted associativity for strong monoidal functorsJacques Comeaux
2025-10-22Simplify System definition and add System functorJacques Comeaux
2025-10-22Add symmetric monoidal structure to Push functorJacques Comeaux
2025-10-16Add Preimage symmetric monoidal functorJacques Comeaux
2025-10-15Improve terminology in commentJacques Comeaux
2025-10-10Add Push and Pull functorsJacques Comeaux
2025-04-23Category of decorated cospans is symmetric monoidalJacques Comeaux
2025-02-08Define tensor product of decorated cospansJacques Comeaux
2025-02-03Show category of cospans is monoidalJacques Comeaux
2025-02-03Add category of finitely-cocomplete categoriesJacques Comeaux
- Objects are categories with all finite colimits - Morphisms are functors preserving finite colimits (i.e. right exact)