From 8d3d3b53cfab2540ed006e768af1e41ea3d35750 Mon Sep 17 00:00:00 2001 From: Jacques Comeaux Date: Mon, 3 Feb 2025 10:11:47 -0600 Subject: Add category of finitely-cocomplete categories - Objects are categories with all finite colimits - Morphisms are functors preserving finite colimits (i.e. right exact) --- Category/Cocomplete/Finitely/Bundle.agda | 19 ++++++++++++++----- 1 file changed, 14 insertions(+), 5 deletions(-) (limited to 'Category/Cocomplete/Finitely/Bundle.agda') diff --git a/Category/Cocomplete/Finitely/Bundle.agda b/Category/Cocomplete/Finitely/Bundle.agda index af40895..74f434f 100644 --- a/Category/Cocomplete/Finitely/Bundle.agda +++ b/Category/Cocomplete/Finitely/Bundle.agda @@ -1,12 +1,12 @@ {-# OPTIONS --without-K --safe #-} module Category.Cocomplete.Finitely.Bundle where -open import Level +open import Categories.Category.Cocartesian.Bundle using (CocartesianCategory) open import Categories.Category.Core using (Category) open import Categories.Category.Cocomplete.Finitely using (FinitelyCocomplete) open import Category.Cocomplete.Finitely.SymmetricMonoidal using (module FinitelyCocompleteSymmetricMonoidal) open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory) - +open import Level using (_⊔_; suc) record FinitelyCocompleteCategory o ℓ e : Set (suc (o ⊔ ℓ ⊔ e)) where @@ -17,11 +17,20 @@ record FinitelyCocompleteCategory o ℓ e : Set (suc (o ⊔ ℓ ⊔ e)) where open Category U public open FinitelyCocomplete finCo public - open FinitelyCocompleteSymmetricMonoidal finCo using (+-monoidal; +-symmetric) + open FinitelyCocompleteSymmetricMonoidal finCo + using () + renaming (+-monoidal to monoidal; +-symmetric to symmetric) + public symmetricMonoidalCategory : SymmetricMonoidalCategory o ℓ e symmetricMonoidalCategory = record { U = U - ; monoidal = +-monoidal - ; symmetric = +-symmetric + ; monoidal = monoidal + ; symmetric = symmetric + } + + cocartesianCategory : CocartesianCategory o ℓ e + cocartesianCategory = record + { U = U + ; cocartesian = cocartesian } -- cgit v1.2.3