From 8ec259bb32b4339b27560f5ea13afa81b9b8febc Mon Sep 17 00:00:00 2001 From: Jacques Comeaux Date: Wed, 7 Jan 2026 10:12:13 -0600 Subject: Differentiate lax and strong monoidal monotones --- Category/Instance/MonoidalPreorders/Primitive.agda | 86 ---------------------- 1 file changed, 86 deletions(-) delete mode 100644 Category/Instance/MonoidalPreorders/Primitive.agda (limited to 'Category/Instance/MonoidalPreorders') diff --git a/Category/Instance/MonoidalPreorders/Primitive.agda b/Category/Instance/MonoidalPreorders/Primitive.agda deleted file mode 100644 index d00e17a..0000000 --- a/Category/Instance/MonoidalPreorders/Primitive.agda +++ /dev/null @@ -1,86 +0,0 @@ -{-# OPTIONS --without-K --safe #-} - -module Category.Instance.MonoidalPreorders.Primitive where - -import Preorder.Primitive.MonotoneMap as MonotoneMap using (_≃_; module ≃) - -open import Categories.Category using (Category) -open import Categories.Category.Helper using (categoryHelper) -open import Category.Instance.Preorders.Primitive using (Preorders) -open import Level using (Level; suc; _⊔_) -open import Preorder.Primitive.Monoidal using (MonoidalPreorder; MonoidalMonotone) -open import Relation.Binary using (IsEquivalence) - -module _ {c₁ c₂ ℓ₁ ℓ₂ : Level} {A : MonoidalPreorder c₁ ℓ₁} {B : MonoidalPreorder c₂ ℓ₂} where - - -- Pointwise equality of monoidal monotone maps - - open MonoidalMonotone using (F) - - _≃_ : (f g : MonoidalMonotone A B) → Set (c₁ ⊔ ℓ₂) - f ≃ g = F f MonotoneMap.≃ F g - - infix 4 _≃_ - - ≃-isEquivalence : IsEquivalence _≃_ - ≃-isEquivalence = let open MonotoneMap.≃ in record - { refl = λ {x} → refl {x = F x} - ; sym = λ {f g} → sym {x = F f} {y = F g} - ; trans = λ {f g h} → trans {i = F f} {j = F g} {k = F h} - } - - module ≃ = IsEquivalence ≃-isEquivalence - -private - - identity : {c ℓ : Level} (A : MonoidalPreorder c ℓ) → MonoidalMonotone A A - identity A = let open MonoidalPreorder A in record - { F = Category.id (Preorders _ _) - ; ε = refl - ; ⊗-homo = λ p₁ p₂ → refl {p₁ ⊗ p₂} - } - - compose - : {c ℓ : Level} - {P Q R : MonoidalPreorder c ℓ} - → MonoidalMonotone Q R - → MonoidalMonotone P Q - → MonoidalMonotone P R - compose {R = R} G F = record - { F = let open Category (Preorders _ _) in G.F ∘ F.F - ; ε = trans G.ε (G.mono F.ε) - ; ⊗-homo = λ p₁ p₂ → trans (G.⊗-homo (F.map p₁) (F.map p₂)) (G.mono (F.⊗-homo p₁ p₂)) - } - where - module F = MonoidalMonotone F - module G = MonoidalMonotone G - open MonoidalPreorder R - - compose-resp-≃ - : {c ℓ : Level} - {A B C : MonoidalPreorder c ℓ} - {f h : MonoidalMonotone B C} - {g i : MonoidalMonotone A B} - → f ≃ h - → g ≃ i - → compose f g ≃ compose h i - compose-resp-≃ {C = C} {f = f} {g} {h} {i} = ∘-resp-≈ {f = F f} {F g} {F h} {F i} - where - open Category (Preorders _ _) - open MonoidalMonotone using (F) - -MonoidalPreorders : (c ℓ : Level) → Category (suc (c ⊔ ℓ)) (c ⊔ ℓ) (c ⊔ ℓ) -MonoidalPreorders c ℓ = categoryHelper record - { Obj = MonoidalPreorder c ℓ - ; _⇒_ = MonoidalMonotone - ; _≈_ = _≃_ - ; id = λ {A} → identity A - ; _∘_ = compose - ; assoc = λ {f = f} {g h} → ≃.refl {x = compose (compose h g) f} - ; identityˡ = λ {f = f} → ≃.refl {x = f} - ; identityʳ = λ {f = f} → ≃.refl {x = f} - ; equiv = ≃-isEquivalence - ; ∘-resp-≈ = λ {f = f} {g h i} → compose-resp-≃ {f = f} {g} {h} {i} - } - where - open MonoidalMonotone using (F) -- cgit v1.2.3