From 8ec259bb32b4339b27560f5ea13afa81b9b8febc Mon Sep 17 00:00:00 2001 From: Jacques Comeaux Date: Wed, 7 Jan 2026 10:12:13 -0600 Subject: Differentiate lax and strong monoidal monotones --- Category/Instance/SymMonPre/Primitive.agda | 83 ------------------------------ 1 file changed, 83 deletions(-) delete mode 100644 Category/Instance/SymMonPre/Primitive.agda (limited to 'Category/Instance/SymMonPre/Primitive.agda') diff --git a/Category/Instance/SymMonPre/Primitive.agda b/Category/Instance/SymMonPre/Primitive.agda deleted file mode 100644 index 7475719..0000000 --- a/Category/Instance/SymMonPre/Primitive.agda +++ /dev/null @@ -1,83 +0,0 @@ -{-# OPTIONS --without-K --safe #-} - -module Category.Instance.SymMonPre.Primitive where - -import Category.Instance.MonoidalPreorders.Primitive as MP using (_≃_; module ≃) - -open import Categories.Category using (Category) -open import Categories.Category.Helper using (categoryHelper) -open import Category.Instance.MonoidalPreorders.Primitive using (MonoidalPreorders) -open import Level using (Level; suc; _⊔_) -open import Preorder.Primitive.Monoidal using (SymmetricMonoidalPreorder; SymmetricMonoidalMonotone) -open import Relation.Binary using (IsEquivalence) - -module _ {c₁ c₂ ℓ₁ ℓ₂ : Level} {A : SymmetricMonoidalPreorder c₁ ℓ₁} {B : SymmetricMonoidalPreorder c₂ ℓ₂} where - - open SymmetricMonoidalMonotone using () renaming (monoidalMonotone to mM) - - -- Pointwise isomorphism of symmetric monoidal monotone maps - _≃_ : (f g : SymmetricMonoidalMonotone A B) → Set (c₁ ⊔ ℓ₂) - f ≃ g = mM f MP.≃ mM g - - infix 4 _≃_ - - ≃-isEquivalence : IsEquivalence _≃_ - ≃-isEquivalence = let open MP.≃ in record - { refl = λ {x} → refl {x = mM x} - ; sym = λ {f g} → sym {x = mM f} {y = mM g} - ; trans = λ {f g h} → trans {i = mM f} {j = mM g} {k = mM h} - } - - module ≃ = IsEquivalence ≃-isEquivalence - -private - - identity : {c ℓ : Level} (A : SymmetricMonoidalPreorder c ℓ) → SymmetricMonoidalMonotone A A - identity {c} {ℓ} A = record - { monoidalMonotone = id {monoidalPreorder} - } - where - open SymmetricMonoidalPreorder A using (monoidalPreorder) - open Category (MonoidalPreorders c ℓ) using (id) - - compose - : {c ℓ : Level} - {P Q R : SymmetricMonoidalPreorder c ℓ} - → SymmetricMonoidalMonotone Q R - → SymmetricMonoidalMonotone P Q - → SymmetricMonoidalMonotone P R - compose {c} {ℓ} {R = R} G F = record - { monoidalMonotone = G.monoidalMonotone ∘ F.monoidalMonotone - } - where - module G = SymmetricMonoidalMonotone G - module F = SymmetricMonoidalMonotone F - open Category (MonoidalPreorders c ℓ) using (_∘_) - - compose-resp-≃ - : {c ℓ : Level} - {A B C : SymmetricMonoidalPreorder c ℓ} - {f h : SymmetricMonoidalMonotone B C} - {g i : SymmetricMonoidalMonotone A B} - → f ≃ h - → g ≃ i - → compose f g ≃ compose h i - compose-resp-≃ {C = C} {f = f} {g} {h} {i} = ∘-resp-≈ {f = mM f} {mM g} {mM h} {mM i} - where - open Category (MonoidalPreorders _ _) - open SymmetricMonoidalMonotone using () renaming (monoidalMonotone to mM) - --- The category of symmetric monoidal preorders -SymMonPre : (c ℓ : Level) → Category (suc (c ⊔ ℓ)) (c ⊔ ℓ) (c ⊔ ℓ) -SymMonPre c ℓ = categoryHelper record - { Obj = SymmetricMonoidalPreorder c ℓ - ; _⇒_ = SymmetricMonoidalMonotone - ; _≈_ = _≃_ - ; id = λ {A} → identity A - ; _∘_ = compose - ; assoc = λ {f = f} {g h} → ≃.refl {x = compose (compose h g) f} - ; identityˡ = λ {f = f} → ≃.refl {x = f} - ; identityʳ = λ {f = f} → ≃.refl {x = f} - ; equiv = ≃-isEquivalence - ; ∘-resp-≈ = λ {f = f} {g h i} → compose-resp-≃ {f = f} {g} {h} {i} - } -- cgit v1.2.3