From 3c62ac510f286f228c9993fe6c37abdcad9e1fb2 Mon Sep 17 00:00:00 2001 From: Jacques Comeaux Date: Mon, 8 Dec 2025 16:09:19 -0600 Subject: Update category of cospans monoidal structure --- Category/Monoidal/Instance/Cospans.agda | 15 +++++++-------- 1 file changed, 7 insertions(+), 8 deletions(-) (limited to 'Category/Monoidal/Instance/Cospans.agda') diff --git a/Category/Monoidal/Instance/Cospans.agda b/Category/Monoidal/Instance/Cospans.agda index 228ddea..a1648db 100644 --- a/Category/Monoidal/Instance/Cospans.agda +++ b/Category/Monoidal/Instance/Cospans.agda @@ -18,8 +18,9 @@ open import Categories.Category.Monoidal.Core using (Monoidal) open import Categories.Functor using (Functor) open import Categories.Functor.Properties using ([_]-resp-≅) open import Categories.NaturalTransformation.NaturalIsomorphism using (niHelper) -open import Category.Instance.Cospans 𝒞 using (Cospans; Cospan) -open import Category.Instance.Properties.FinitelyCocompletes {o} {ℓ} {e} using (FinitelyCocompletes-CC) +open import Category.Instance.Cospans 𝒞 using (Cospans) +open import Category.Diagram.Cospan using (Cospan; cospan) +open import Category.Cartesian.Instance.FinitelyCocompletes {o} {ℓ} {e} using (FinitelyCocompletes-CC) open import Category.Monoidal.Instance.Cospans.Lift {o} {ℓ} {e} using (module Square) open import Data.Product.Base using (_,_) open import Functor.Instance.Cospan.Stack 𝒞 using (⊗) @@ -61,7 +62,6 @@ CospansMonoidal = record ; pentagon = pentagon } where - module ⊗ = Functor ⊗ module Cospans = Category Cospans module Unitorˡ = Square ⊥+--id module Unitorʳ = Square -+⊥-id @@ -83,16 +83,15 @@ CospansMonoidal = record CospansBraided : Braided CospansMonoidal CospansBraided = record { braiding = niHelper record - { η = λ { (X , Y) → Braiding.FX≅GX′.from {X , Y} } - ; η⁻¹ = λ { (Y , X) → Braiding.FX≅GX′.to {Y , X} } - ; commute = λ { {X , Y} {X′ , Y′} (f , g) → Braiding.from (record { f₁ = f₁ f , f₁ g ; f₂ = f₂ f , f₂ g }) } - ; iso = λ { (X , Y) → Braiding.FX≅GX′.iso {X , Y} } + { η = λ (X , Y) → Braiding.FX≅GX′.from {X , Y} + ; η⁻¹ = λ (Y , X) → Braiding.FX≅GX′.to {Y , X} + ; commute = λ (cospan f₁ f₂ , cospan g₁ g₂) → Braiding.from (cospan (f₁ , g₁) (f₂ , g₂)) + ; iso = λ (X , Y) → Braiding.FX≅GX′.iso {X , Y} } ; hexagon₁ = sym L-resp-⊗ ⟩∘⟨ refl ⟩∘⟨ sym L-resp-⊗ ○ refl⟩∘⟨ sym homomorphism ○ sym homomorphism ○ L-resp-≈ hex₁ ○ homomorphism ○ refl⟩∘⟨ homomorphism ; hexagon₂ = sym L-resp-⊗ ⟩∘⟨refl ⟩∘⟨ sym L-resp-⊗ ○ sym homomorphism ⟩∘⟨refl ○ sym homomorphism ○ L-resp-≈ hex₂ ○ homomorphism ○ homomorphism ⟩∘⟨refl } where - open Cospan module Cospans = Category Cospans open Cospans.Equiv open Cospans.HomReasoning -- cgit v1.2.3