From 8ec259bb32b4339b27560f5ea13afa81b9b8febc Mon Sep 17 00:00:00 2001 From: Jacques Comeaux Date: Wed, 7 Jan 2026 10:12:13 -0600 Subject: Differentiate lax and strong monoidal monotones --- Functor/Free/Instance/MonoidalPreorder.agda | 75 ----------------------------- 1 file changed, 75 deletions(-) delete mode 100644 Functor/Free/Instance/MonoidalPreorder.agda (limited to 'Functor/Free/Instance/MonoidalPreorder.agda') diff --git a/Functor/Free/Instance/MonoidalPreorder.agda b/Functor/Free/Instance/MonoidalPreorder.agda deleted file mode 100644 index ca03786..0000000 --- a/Functor/Free/Instance/MonoidalPreorder.agda +++ /dev/null @@ -1,75 +0,0 @@ -{-# OPTIONS --without-K --safe #-} - -module Functor.Free.Instance.MonoidalPreorder where - -import Categories.Category.Monoidal.Utilities as ⊗-Util - -open import Categories.Category using (Category) -open import Categories.Category.Instance.Monoidals using (Monoidals) -open import Categories.Category.Monoidal using (MonoidalCategory) -open import Categories.Functor using (Functor) -open import Categories.Functor.Monoidal using (MonoidalFunctor) -open import Categories.Functor.Monoidal.Properties using (∘-Monoidal) -open import Categories.NaturalTransformation.NaturalIsomorphism.Monoidal using (module Lax) -open import Category.Instance.MonoidalPreorders.Primitive using (MonoidalPreorders; _≃_; module ≃) -open import Data.Product using (_,_) -open import Level using (Level) -open import Preorder.Primitive.Monoidal using (MonoidalPreorder; MonoidalMonotone) - -open Lax using (MonoidalNaturalIsomorphism) -  --- The free monoidal preorder of a monoidal category - -import Functor.Free.Instance.Preorder as Preorder - -module _ {o ℓ e : Level} where - - monoidalPreorder : MonoidalCategory o ℓ e → MonoidalPreorder o ℓ - monoidalPreorder C = record - { U = Preorder.Free.₀ U - ; monoidal = record - { unit = unit - ; tensor = Preorder.Free.₁ ⊗ - ; unitaryˡ = Preorder.Free.F-resp-≈ unitorˡ-naturalIsomorphism - ; unitaryʳ = Preorder.Free.F-resp-≈ unitorʳ-naturalIsomorphism - ; associative = λ x y z → record - { from = associator.from {x} {y} {z} - ; to = associator.to {x} {y} {z} - } - } - } - where - open MonoidalCategory C - open ⊗-Util monoidal - - module _ {A B : MonoidalCategory o ℓ e} where - - monoidalMonotone : MonoidalFunctor A B → MonoidalMonotone (monoidalPreorder A) (monoidalPreorder B) - monoidalMonotone F = record - { F = Preorder.Free.₁ F.F - ; ε = F.ε - ; ⊗-homo = λ p₁ p₂ → F.⊗-homo.η (p₁ , p₂) - } - where - module F = MonoidalFunctor F - - open MonoidalNaturalIsomorphism using (U) - - pointwiseIsomorphism - : {F G : MonoidalFunctor A B} - → MonoidalNaturalIsomorphism F G - → monoidalMonotone F ≃ monoidalMonotone G - pointwiseIsomorphism F≃G = Preorder.Free.F-resp-≈ (U F≃G) - -Free : {o ℓ e : Level} → Functor (Monoidals o ℓ e) (MonoidalPreorders o ℓ) -Free = record - { F₀ = monoidalPreorder - ; F₁ = monoidalMonotone - ; identity = λ {A} → ≃.refl {A = monoidalPreorder A} {x = id} - ; homomorphism = λ {f = f} {h} → ≃.refl {x = monoidalMonotone (∘-Monoidal h f)} - ; F-resp-≈ = pointwiseIsomorphism - } - where - open Category (MonoidalPreorders _ _) using (id) - -module Free {o ℓ e} = Functor (Free {o} {ℓ} {e}) -- cgit v1.2.3