From 5f4d1cf740591476d3c7bc270fd11a2c578ab7e6 Mon Sep 17 00:00:00 2001 From: Jacques Comeaux Date: Wed, 5 Nov 2025 08:11:48 -0600 Subject: Adjust universe levels --- Functor/Instance/Nat/Edge.agda | 20 ++++++-------------- 1 file changed, 6 insertions(+), 14 deletions(-) (limited to 'Functor/Instance/Nat/Edge.agda') diff --git a/Functor/Instance/Nat/Edge.agda b/Functor/Instance/Nat/Edge.agda index f8d47c2..5de8f84 100644 --- a/Functor/Instance/Nat/Edge.agda +++ b/Functor/Instance/Nat/Edge.agda @@ -1,8 +1,9 @@ {-# OPTIONS --without-K --safe #-} open import Data.Hypergraph.Label using (HypergraphLabel) +open import Level using (Level; 0ℓ) -module Functor.Instance.Nat.Edge (HL : HypergraphLabel) where +module Functor.Instance.Nat.Edge {ℓ : Level} (HL : HypergraphLabel) where import Data.Vec as Vec import Data.Vec.Properties as VecProps @@ -11,10 +12,9 @@ open import Categories.Category.Instance.Nat using (Nat) open import Categories.Category.Instance.Setoids using (Setoids) open import Categories.Functor using (Functor) open import Data.Fin using (Fin) -open import Data.Hypergraph.Edge HL as Edge using (Edgeₛ; map; _≈_) +open import Data.Hypergraph.Edge {ℓ} HL as Edge using (Edgeₛ; map; mapₛ; _≈_) open import Data.Nat using (ℕ) -open import Data.Vec.Relation.Binary.Equality.Cast using (≈-cong′; ≈-reflexive) -open import Level using (0ℓ) +open import Data.Vec.Relation.Binary.Equality.Cast using (≈-reflexive) open import Function using (id; _∘_; Func; _⟶ₛ_) open import Relation.Binary using (Setoid) open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_) @@ -26,14 +26,6 @@ open Edge._≈_ open Func open Functor -Edge₁ : {n m : ℕ} → (Fin n → Fin m) → Edgeₛ n ⟶ₛ Edgeₛ m -Edge₁ f .to = map f -Edge₁ f .cong x≈y = record - { ≡arity = ≡arity x≈y - ; ≡label = ≡label x≈y - ; ≡ports = ≈-cong′ (Vec.map f) (≡ports x≈y) - } - map-id : {v : ℕ} {e : Edge.Edge v} → map id e ≈ e map-id .≡arity = ≡.refl map-id .≡label = HL.≈-reflexive ≡.refl @@ -59,9 +51,9 @@ map-resp-≗ f≗g .≡arity = ≡.refl map-resp-≗ f≗g .≡label = HL.≈-reflexive ≡.refl map-resp-≗ f≗g {e} .≡ports = ≈-reflexive (VecProps.map-cong f≗g (ports e)) -Edge : Functor Nat (Setoids 0ℓ 0ℓ) +Edge : Functor Nat (Setoids ℓ ℓ) Edge .F₀ = Edgeₛ -Edge .F₁ = Edge₁ +Edge .F₁ = mapₛ Edge .identity = map-id Edge .homomorphism = map-∘ _ _ Edge .F-resp-≈ = map-resp-≗ -- cgit v1.2.3