From dc3b799d6f9cdd4fb0b2b32f323b7128ccc14a80 Mon Sep 17 00:00:00 2001 From: Jacques Comeaux Date: Sat, 24 Aug 2024 12:59:59 -0500 Subject: Generalize coequalizer result to arbitrary category --- Nat/Properties.agda | 17 +++++------------ 1 file changed, 5 insertions(+), 12 deletions(-) (limited to 'Nat') diff --git a/Nat/Properties.agda b/Nat/Properties.agda index a6fb060..6e04346 100644 --- a/Nat/Properties.agda +++ b/Nat/Properties.agda @@ -16,7 +16,7 @@ open import Categories.Diagram.Pushout Nat using (Pushout) open import Categories.Diagram.Pushout.Properties Nat using (Coproduct×Coequalizer⇒Pushout) open import Categories.Object.Coproduct Nat using (Coproduct; IsCoproduct; IsCoproduct⇒Coproduct) -open import Coeq using (coequalizer-on-coproduct) +open import Coeq Nat using (coequalizer-on-coproduct) open import FinMerge using (glue-iter; glue-unglue-once) open import FinMerge.Properties using (lemma₂; merge-unmerge; unmerge-merge) open import Util using (compare; less; equal; greater; _<_<_) @@ -107,17 +107,10 @@ Coeq : {A B : ℕ} (f g : A ⇒ B) → Coequalizer f g Coeq {ℕ.zero} _ _ = makeZeroCoequalizer Coeq {ℕ.suc A} f g = record { arr = Q₂.arr ∘ Q₁.arr - ; isCoequalizer = - coequalizer-on-coproduct - (λ _ → Fin.zero) - Fin.suc - f - g - Q₁.arr - Q₂.arr - split - Q₁.isCoequalizer - Q₂.isCoequalizer + ; isCoequalizer = coequalizer-on-coproduct + split + Q₁.isCoequalizer + Q₂.isCoequalizer } where simpleCoeq : Coequalizer (λ _ → f (# 0)) (λ _ → g (# 0)) -- cgit v1.2.3