{-# OPTIONS --without-K --safe #-} open import Level using (Level; _⊔_; suc; 0ℓ) module Adjoint.Instance.List {c ℓ : Level} where import Data.List as L import Data.List.Relation.Binary.Pointwise as PW open import Categories.Category.Monoidal.Bundle using (MonoidalCategory; SymmetricMonoidalCategory) open import Category.Instance.Setoids.SymmetricMonoidal using (Setoids-×) module S = SymmetricMonoidalCategory (Setoids-× {c ⊔ ℓ} {c ⊔ ℓ}) open import Categories.Adjoint using (_⊣_) open import Categories.Category.Construction.Monoids using (Monoids) open import Categories.Functor using (Functor; id; _∘F_) open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) open import Categories.Object.Monoid S.monoidal using (Monoid; Monoid⇒) open import Data.Monoid using (toMonoid; toMonoid⇒) open import Data.Opaque.List using ([-]ₛ; Listₛ; mapₛ; foldₛ; ++ₛ; ++ₛ-homo; []ₛ-homo; fold-mapₛ; fold) open import Data.Product using (_,_; uncurry) open import Data.Setoid using (∣_∣) open import Function using (_⟶ₛ_; _⟨$⟩_) open import Functor.Forgetful.Instance.Monoid {suc (c ⊔ ℓ)} {c ⊔ ℓ} {c ⊔ ℓ} using (Forget) open import Functor.Free.Instance.Monoid {c ⊔ ℓ} {c ⊔ ℓ} using (Free; Listₘ) open import Relation.Binary using (Setoid) open Monoid open Monoid⇒ S-mc : MonoidalCategory (suc (c ⊔ ℓ)) (c ⊔ ℓ) (c ⊔ ℓ) S-mc = record { monoidal = S.monoidal } opaque unfolding [-]ₛ unfolding fold map-[-]ₛ : {X Y : Setoid (c ⊔ ℓ) (c ⊔ ℓ)} → (f : X ⟶ₛ Y) → (open Setoid (Listₛ Y)) → {x : ∣ X ∣} → [-]ₛ ⟨$⟩ (f ⟨$⟩ x) ≈ mapₛ f ⟨$⟩ ([-]ₛ ⟨$⟩ x) map-[-]ₛ {X} {Y} f {x} = Setoid.refl (Listₛ Y) zig : (Aₛ : Setoid (c ⊔ ℓ) (c ⊔ ℓ)) {xs : ∣ Listₛ Aₛ ∣} → (open Setoid (Listₛ Aₛ)) → foldₛ (toMonoid (Listₘ Aₛ)) ⟨$⟩ (mapₛ [-]ₛ ⟨$⟩ xs) ≈ xs zig Aₛ {xs = L.[]} = Setoid.refl (Listₛ Aₛ) zig Aₛ {xs = x L.∷ xs} = Setoid.refl Aₛ PW.∷ zig Aₛ {xs = xs} zag : (M : Monoid) {x : ∣ Carrier M ∣} → (open Setoid (Carrier M)) → fold (toMonoid M) ([-]ₛ ⟨$⟩ x) ≈ x zag M {x} = Setoid.sym (Carrier M) (identityʳ M {x , _}) unit : NaturalTransformation id (Forget S-mc ∘F Free) unit = ntHelper record { η = λ X → [-]ₛ {c ⊔ ℓ} {c ⊔ ℓ} {X} ; commute = map-[-]ₛ } foldₘ : (X : Monoid) → Monoid⇒ (Listₘ (Carrier X)) X foldₘ X .arr = foldₛ (toMonoid X) foldₘ X .preserves-μ {xs , ys} = ++ₛ-homo (toMonoid X) xs ys foldₘ X .preserves-η {_} = []ₛ-homo (toMonoid X) counit : NaturalTransformation (Free ∘F Forget S-mc) id counit = ntHelper record { η = foldₘ ; commute = λ {X} {Y} f → uncurry (fold-mapₛ (toMonoid X) (toMonoid Y)) (toMonoid⇒ X Y f) } List⊣ : Free ⊣ Forget S-mc List⊣ = record { unit = unit ; counit = counit ; zig = λ {X} → zig X ; zag = λ {M} → zag M }