{-# OPTIONS --without-K --safe #-} open import Level using (Level; _⊔_; suc; 0ℓ) module Adjoint.Instance.List {ℓ : Level} where import Data.List as L import Data.List.Relation.Binary.Pointwise as PW open import Categories.Category.Monoidal.Bundle using (MonoidalCategory; SymmetricMonoidalCategory) open import Category.Instance.Setoids.SymmetricMonoidal {ℓ} {ℓ} using (Setoids-×) module S = SymmetricMonoidalCategory Setoids-× open import Categories.Adjoint using (_⊣_) open import Categories.Category.Construction.Monoids using (Monoids) open import Categories.Functor using (Functor; id; _∘F_) open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) open import Categories.Object.Monoid S.monoidal using (Monoid; IsMonoid; Monoid⇒) open import Data.Monoid using (toMonoid; toMonoid⇒) open import Data.Opaque.List using ([-]ₛ; Listₛ; mapₛ; foldₛ; ++ₛ-homo; []ₛ-homo; fold-mapₛ; fold) open import Data.Product using (_,_; uncurry) open import Data.Setoid using (∣_∣) open import Function using (_⟶ₛ_; _⟨$⟩_) open import Functor.Forgetful.Instance.Monoid {suc ℓ} {ℓ} {ℓ} using () renaming (Forget to Forget′) open import Functor.Free.Instance.Monoid {ℓ} {ℓ} using (Listₘ; mapₘ; ListMonoid) renaming (Free to Free′) open import Relation.Binary using (Setoid) open Monoid open Monoid⇒ open import Categories.Category using (Category) Mon[S] : Category (suc ℓ) ℓ ℓ Mon[S] = Monoids S.monoidal Free : Functor S.U Mon[S] Free = Free′ Forget : Functor Mon[S] S.U Forget = Forget′ S.monoidal opaque unfolding [-]ₛ mapₘ map-[-]ₛ : {X Y : Setoid ℓ ℓ} (f : X ⟶ₛ Y) {x : ∣ X ∣} → (open Setoid (Listₛ Y)) → [-]ₛ ⟨$⟩ (f ⟨$⟩ x) ≈ arr (mapₘ f) ⟨$⟩ ([-]ₛ ⟨$⟩ x) map-[-]ₛ {X} {Y} f {x} = Setoid.refl (Listₛ Y) unit : NaturalTransformation id (Forget ∘F Free) unit = ntHelper record { η = λ X → [-]ₛ {ℓ} {ℓ} {X} ; commute = map-[-]ₛ } opaque unfolding toMonoid ListMonoid foldₘ : (X : Monoid) → Monoid⇒ (Listₘ (Carrier X)) X foldₘ X .arr = foldₛ (toMonoid X) foldₘ X .preserves-μ {xs , ys} = ++ₛ-homo (toMonoid X) xs ys foldₘ X .preserves-η {_} = []ₛ-homo (toMonoid X) opaque unfolding foldₘ toMonoid⇒ mapₘ fold-mapₘ : {X Y : Monoid} (f : Monoid⇒ X Y) {x : ∣ Listₛ (Carrier X) ∣} → (open Setoid (Carrier Y)) → arr (foldₘ Y) ⟨$⟩ (arr (mapₘ (arr f)) ⟨$⟩ x) ≈ arr f ⟨$⟩ (arr (foldₘ X) ⟨$⟩ x) fold-mapₘ {X} {Y} f = uncurry (fold-mapₛ (toMonoid X) (toMonoid Y)) (toMonoid⇒ X Y f) counit : NaturalTransformation (Free ∘F Forget) id counit = ntHelper record { η = foldₘ ; commute = fold-mapₘ } opaque unfolding mapₘ foldₘ fold zig : (Aₛ : Setoid ℓ ℓ) {xs : ∣ Listₛ Aₛ ∣} → (open Setoid (Listₛ Aₛ)) → arr (foldₘ (Listₘ Aₛ)) ⟨$⟩ (arr (mapₘ [-]ₛ) ⟨$⟩ xs) ≈ xs zig Aₛ {xs = L.[]} = Setoid.refl (Listₛ Aₛ) zig Aₛ {xs = x L.∷ xs} = Setoid.refl Aₛ PW.∷ zig Aₛ {xs = xs} opaque unfolding foldₘ fold zag : (M : Monoid) {x : ∣ Carrier M ∣} → (open Setoid (Carrier M)) → arr (foldₘ M) ⟨$⟩ ([-]ₛ ⟨$⟩ x) ≈ x zag M {x} = Setoid.sym (Carrier M) (identityʳ M {x , _}) List⊣ : Free ⊣ Forget List⊣ = record { unit = unit ; counit = counit ; zig = λ {X} → zig X ; zag = λ {M} → zag M }