{-# OPTIONS --without-K --safe #-} open import Level using (Level; suc; _⊔_) module Category.Instance.FinitelyCocompletes {o ℓ e : Level} where import Category.Instance.One.Properties as OneProps open import Categories.Category using (_[_,_]) open import Categories.Category.BinaryProducts using (BinaryProducts) open import Categories.Category.Cartesian using (Cartesian) open import Categories.Category.Core using (Category) open import Categories.Category.Helper using (categoryHelper) open import Categories.Category.Instance.Cats using (Cats) open import Categories.Category.Instance.One using (One; One-⊤) open import Categories.Category.Monoidal.Instance.Cats using () renaming (module Product to Products) open import Categories.Category.Product using (πˡ; πʳ; _※_; _⁂_) renaming (Product to ProductCat) open import Categories.Diagram.Coequalizer using (IsCoequalizer) open import Categories.Functor using (Functor) renaming (id to idF) open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_; associator; unitorˡ; unitorʳ; module ≃; _ⓘₕ_) open import Categories.Object.Coproduct using (IsCoproduct) open import Categories.Object.Initial using (IsInitial) open import Categories.Object.Product.Core using (Product) open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory) open import Category.Cocomplete.Finitely.Product using (FinitelyCocomplete-×) open import Data.Product.Base using (_,_; proj₁; proj₂; map; dmap; zip′) open import Function.Base using (id; flip) open import Functor.Exact using (∘-RightExactFunctor; RightExactFunctor; idREF; IsRightExact; rightexact) FinitelyCocompletes : Category (suc (o ⊔ ℓ ⊔ e)) (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e) FinitelyCocompletes = categoryHelper record { Obj = FinitelyCocompleteCategory o ℓ e ; _⇒_ = RightExactFunctor ; _≈_ = λ F G → REF.F F ≃ REF.F G ; id = idREF ; _∘_ = ∘-RightExactFunctor ; assoc = λ {_ _ _ _ F G H} → associator (REF.F F) (REF.F G) (REF.F H) ; identityˡ = unitorˡ ; identityʳ = unitorʳ ; equiv = record { refl = ≃.refl ; sym = ≃.sym ; trans = ≃.trans } ; ∘-resp-≈ = _ⓘₕ_ } where module REF = RightExactFunctor One-FCC : FinitelyCocompleteCategory o ℓ e One-FCC = record { U = One ; finCo = OneProps.finitelyCocomplete } _×_ : FinitelyCocompleteCategory o ℓ e → FinitelyCocompleteCategory o ℓ e → FinitelyCocompleteCategory o ℓ e _×_ 𝒞 𝒟 = record { U = ProductCat 𝒞.U 𝒟.U ; finCo = FinitelyCocomplete-× 𝒞.finCo 𝒟.finCo } where module 𝒞 = FinitelyCocompleteCategory 𝒞 module 𝒟 = FinitelyCocompleteCategory 𝒟 module _ (𝒞 𝒟 : FinitelyCocompleteCategory o ℓ e) where private module 𝒞 = FinitelyCocompleteCategory 𝒞 module 𝒟 = FinitelyCocompleteCategory 𝒟 module 𝒞×𝒟 = FinitelyCocompleteCategory (𝒞 × 𝒟) πˡ-RightExact : IsRightExact (𝒞 × 𝒟) 𝒞 πˡ πˡ-RightExact = record { F-resp-⊥ = F-resp-⊥ ; F-resp-+ = F-resp-+ ; F-resp-coeq = F-resp-coeq } where F-resp-⊥ : {(A , B) : 𝒞×𝒟.Obj} → IsInitial 𝒞×𝒟.U (A , B) → IsInitial 𝒞.U A F-resp-⊥ {A , B} initial = record { ! = λ { {C} → proj₁ (! {C , B}) } ; !-unique = λ { f → proj₁ (!-unique (f , 𝒟.id)) } } where open IsInitial initial F-resp-+ : {(C₁ , D₁) (C₂ , D₂) (C₃ , D₃) : 𝒞×𝒟.Obj} {(i₁-c , i₁-d) : 𝒞×𝒟.U [ (C₁ , D₁) , (C₃ , D₃) ]} {(i₂-c , i₂-d) : 𝒞×𝒟.U [ (C₂ , D₂) , (C₃ , D₃) ]} → IsCoproduct (ProductCat 𝒞.U 𝒟.U) (i₁-c , i₁-d) (i₂-c , i₂-d) → IsCoproduct 𝒞.U i₁-c i₂-c F-resp-+ {_} {_} {_} {i₁-c , i₁-d} {i₂-c , i₂-d} isCoproduct = record { [_,_] = λ { h₁ h₂ → proj₁ (copairing (h₁ , i₁-d) (h₂ , i₂-d)) } ; inject₁ = proj₁ inject₁ ; inject₂ = proj₁ inject₂ ; unique = λ { eq₁ eq₂ → proj₁ (unique (eq₁ , 𝒟.identityˡ) (eq₂ , 𝒟.identityˡ)) } } where open IsCoproduct isCoproduct renaming ([_,_] to copairing) F-resp-coeq : {(C₁ , D₁) (C₂ , D₂) (C₃ , D₃) : 𝒞×𝒟.Obj} {f g : 𝒞×𝒟.U [ (C₁ , D₁) , (C₂ , D₂) ]} {h : 𝒞×𝒟.U [ (C₂ , D₂) , (C₃ , D₃) ]} → IsCoequalizer (ProductCat 𝒞.U 𝒟.U) f g h → IsCoequalizer 𝒞.U (proj₁ f) (proj₁ g) (proj₁ h) F-resp-coeq isCoequalizer = record { equality = proj₁ equality ; coequalize = λ { eq → proj₁ (coequalize (eq , proj₂ equality)) } ; universal = proj₁ universal ; unique = λ { eq → proj₁ (unique (eq , 𝒟.Equiv.sym 𝒟.identityˡ)) } } where open IsCoequalizer isCoequalizer πʳ-RightExact : IsRightExact (𝒞 × 𝒟) 𝒟 πʳ πʳ-RightExact = record { F-resp-⊥ = F-resp-⊥ ; F-resp-+ = F-resp-+ ; F-resp-coeq = F-resp-coeq } where F-resp-⊥ : {(A , B) : 𝒞×𝒟.Obj} → IsInitial 𝒞×𝒟.U (A , B) → IsInitial 𝒟.U B F-resp-⊥ {A , B} initial = record { ! = λ { {C} → proj₂ (! {A , C}) } ; !-unique = λ { f → proj₂ (!-unique (𝒞.id , f)) } } where open IsInitial initial F-resp-+ : {(C₁ , D₁) (C₂ , D₂) (C₃ , D₃) : 𝒞×𝒟.Obj} {(i₁-c , i₁-d) : 𝒞×𝒟.U [ (C₁ , D₁) , (C₃ , D₃) ]} {(i₂-c , i₂-d) : 𝒞×𝒟.U [ (C₂ , D₂) , (C₃ , D₃) ]} → IsCoproduct 𝒞×𝒟.U (i₁-c , i₁-d) (i₂-c , i₂-d) → IsCoproduct 𝒟.U i₁-d i₂-d F-resp-+ {_} {_} {_} {i₁-c , i₁-d} {i₂-c , i₂-d} isCoproduct = record { [_,_] = λ { h₁ h₂ → proj₂ (copairing (i₁-c , h₁) (i₂-c , h₂)) } ; inject₁ = proj₂ inject₁ ; inject₂ = proj₂ inject₂ ; unique = λ { eq₁ eq₂ → proj₂ (unique (𝒞.identityˡ , eq₁) (𝒞.identityˡ , eq₂)) } } where open IsCoproduct isCoproduct renaming ([_,_] to copairing) F-resp-coeq : {(C₁ , D₁) (C₂ , D₂) (C₃ , D₃) : 𝒞×𝒟.Obj} {f g : 𝒞×𝒟.U [ (C₁ , D₁) , (C₂ , D₂) ]} {h : 𝒞×𝒟.U [ (C₂ , D₂) , (C₃ , D₃) ]} → IsCoequalizer 𝒞×𝒟.U f g h → IsCoequalizer 𝒟.U (proj₂ f) (proj₂ g) (proj₂ h) F-resp-coeq isCoequalizer = record { equality = proj₂ equality ; coequalize = λ { eq → proj₂ (coequalize (proj₁ equality , eq)) } ; universal = proj₂ universal ; unique = λ { eq → proj₂ (unique (𝒞.Equiv.sym 𝒞.identityˡ , eq)) } } where open IsCoequalizer isCoequalizer module _ where open FinitelyCocompleteCategory using (U) IsRightExact-※ : {𝒞 𝒟 ℰ : FinitelyCocompleteCategory o ℓ e} (F : Functor (U 𝒞) (U 𝒟)) (G : Functor (U 𝒞) (U ℰ)) → IsRightExact 𝒞 𝒟 F → IsRightExact 𝒞 ℰ G → IsRightExact 𝒞 (𝒟 × ℰ) (F ※ G) IsRightExact-※ {𝒞} {𝒟} {ℰ} F G isRightExact-F isRightExact-G = record  { F-resp-⊥ = F-resp-⊥′ ; F-resp-+ = F-resp-+′ ; F-resp-coeq = F-resp-coeq′ } where module 𝒞 = FinitelyCocompleteCategory 𝒞 module 𝒟 = FinitelyCocompleteCategory 𝒟 module ℰ = FinitelyCocompleteCategory ℰ open IsRightExact isRightExact-F open IsRightExact isRightExact-G renaming (F-resp-⊥ to G-resp-⊥; F-resp-+ to G-resp-+; F-resp-coeq to G-resp-coeq) module F = Functor F module G = Functor G F-resp-⊥′ : {A : 𝒞.Obj} → IsInitial 𝒞.U A → IsInitial (ProductCat 𝒟.U ℰ.U) (F.₀ A , G.₀ A) F-resp-⊥′ A-isInitial = record { ! = F[A]-isInitial.! , G[A]-isInitial.! ; !-unique = dmap F[A]-isInitial.!-unique G[A]-isInitial.!-unique } where module F[A]-isInitial = IsInitial (F-resp-⊥ A-isInitial) module G[A]-isInitial = IsInitial (G-resp-⊥ A-isInitial) F-resp-+′ : {A B C : 𝒞.Obj} {i₁ : 𝒞.U [ A , C ]} {i₂ : 𝒞.U [ B , C ]} → IsCoproduct 𝒞.U i₁ i₂ → IsCoproduct (ProductCat 𝒟.U ℰ.U) (F.₁ i₁ , G.₁ i₁) (F.₁ i₂ , G.₁ i₂) F-resp-+′ {A} {B} {A+B} A+B-isCoproduct = record { [_,_] = zip′ F[A+B]-isCoproduct.[_,_] G[A+B]-isCoproduct.[_,_] ; inject₁ = F[A+B]-isCoproduct.inject₁ , G[A+B]-isCoproduct.inject₁ ; inject₂ = F[A+B]-isCoproduct.inject₂ , G[A+B]-isCoproduct.inject₂ ; unique = zip′ F[A+B]-isCoproduct.unique G[A+B]-isCoproduct.unique } where module F[A+B]-isCoproduct = IsCoproduct (F-resp-+ A+B-isCoproduct) module G[A+B]-isCoproduct = IsCoproduct (G-resp-+ A+B-isCoproduct) F-resp-coeq′ : {A B C : 𝒞.Obj} {f g : 𝒞.U [ A , B ]} {h : 𝒞.U [ B , C ]} → IsCoequalizer 𝒞.U f g h → IsCoequalizer (ProductCat 𝒟.U ℰ.U) (F.₁ f , G.₁ f) (F.₁ g , G.₁ g) (F.₁ h , G.₁ h) F-resp-coeq′ h-isCoequalizer = record { equality = F[h]-isCoequalizer.equality , G[h]-isCoequalizer.equality ; coequalize = map F[h]-isCoequalizer.coequalize G[h]-isCoequalizer.coequalize ; universal = F[h]-isCoequalizer.universal , G[h]-isCoequalizer.universal ; unique = map F[h]-isCoequalizer.unique G[h]-isCoequalizer.unique } where module F[h]-isCoequalizer = IsCoequalizer (F-resp-coeq h-isCoequalizer) module G[h]-isCoequalizer = IsCoequalizer (G-resp-coeq h-isCoequalizer) IsRightExact-⁂ : {𝒜 ℬ 𝒞 𝒟 : FinitelyCocompleteCategory o ℓ e} (F : Functor (U 𝒜) (U 𝒞)) (G : Functor (U ℬ) (U 𝒟)) → IsRightExact 𝒜 𝒞 F → IsRightExact ℬ 𝒟 G → IsRightExact (𝒜 × ℬ) (𝒞 × 𝒟) (F ⁂ G) IsRightExact-⁂ {𝒜} {ℬ} {𝒞} {𝒟} F G isRightExact-F isRightExact-G = record  { F-resp-⊥ = F-resp-⊥′ ; F-resp-+ = F-resp-+′ ; F-resp-coeq = F-resp-coeq′ } where module 𝒜 = FinitelyCocompleteCategory 𝒜 module ℬ = FinitelyCocompleteCategory ℬ module 𝒞 = FinitelyCocompleteCategory 𝒞 module 𝒟 = FinitelyCocompleteCategory 𝒟 module 𝒜×ℬ = FinitelyCocompleteCategory (𝒜 × ℬ) module 𝒞×𝒟 = FinitelyCocompleteCategory (𝒞 × 𝒟) open IsRightExact isRightExact-F open IsRightExact isRightExact-G renaming (F-resp-⊥ to G-resp-⊥; F-resp-+ to G-resp-+; F-resp-coeq to G-resp-coeq) module F = Functor F module G = Functor G F-resp-⊥′ : {(A , B) : 𝒜×ℬ.Obj} → IsInitial 𝒜×ℬ.U (A , B) → IsInitial 𝒞×𝒟.U (F.₀ A , G.₀ B) F-resp-⊥′ {A , B} A,B-isInitial = record { ! = F[A]-isInitial.! , G[B]-isInitial.! ; !-unique = dmap F[A]-isInitial.!-unique G[B]-isInitial.!-unique } where module A,B-isInitial = IsInitial A,B-isInitial A-isInitial : IsInitial 𝒜.U A A-isInitial = record { ! = λ { {X} → proj₁ (A,B-isInitial.! {X , B}) } ; !-unique = λ { f → proj₁ (A,B-isInitial.!-unique (f , ℬ.id)) } } B-isInitial : IsInitial ℬ.U B B-isInitial = record { ! = λ { {X} → proj₂ (A,B-isInitial.! {A , X}) } ; !-unique = λ { f → proj₂ (A,B-isInitial.!-unique (𝒜.id , f)) } } module F[A]-isInitial = IsInitial (F-resp-⊥ A-isInitial) module G[B]-isInitial = IsInitial (G-resp-⊥ B-isInitial) F-resp-+′ : {A B C : 𝒜×ℬ.Obj} {(i₁ , i₁′) : 𝒜×ℬ.U [ A , C ]} {(i₂ , i₂′) : 𝒜×ℬ.U [ B , C ]} → IsCoproduct 𝒜×ℬ.U (i₁ , i₁′) (i₂ , i₂′) → IsCoproduct 𝒞×𝒟.U (F.₁ i₁ , G.₁ i₁′) (F.₁ i₂ , G.₁ i₂′) F-resp-+′ {A} {B} {A+B} {i₁ , i₁′} {i₂ , i₂′} A+B,A+B′-isCoproduct = record { [_,_] = zip′ F[A+B]-isCoproduct.[_,_] G[A+B′]-isCoproduct.[_,_] ; inject₁ = F[A+B]-isCoproduct.inject₁ , G[A+B′]-isCoproduct.inject₁ ; inject₂ = F[A+B]-isCoproduct.inject₂ , G[A+B′]-isCoproduct.inject₂ ; unique = zip′ F[A+B]-isCoproduct.unique G[A+B′]-isCoproduct.unique } where module A+B,A+B′-isCoproduct = IsCoproduct A+B,A+B′-isCoproduct A+B-isCoproduct : IsCoproduct 𝒜.U i₁ i₂ A+B-isCoproduct = record { [_,_] = λ { f g → proj₁ (A+B,A+B′-isCoproduct.[ (f , i₁′) , (g , i₂′) ]) } ; inject₁ = proj₁ A+B,A+B′-isCoproduct.inject₁ ; inject₂ = proj₁ A+B,A+B′-isCoproduct.inject₂ ; unique = λ { ≈f ≈g → proj₁ (A+B,A+B′-isCoproduct.unique (≈f , ℬ.identityˡ) (≈g , ℬ.identityˡ)) } } A+B′-isCoproduct : IsCoproduct ℬ.U i₁′ i₂′ A+B′-isCoproduct = record { [_,_] = λ { f g → proj₂ (A+B,A+B′-isCoproduct.[ (i₁ , f) , (i₂ , g) ]) } ; inject₁ = proj₂ A+B,A+B′-isCoproduct.inject₁ ; inject₂ = proj₂ A+B,A+B′-isCoproduct.inject₂ ; unique = λ { ≈f ≈g → proj₂ (A+B,A+B′-isCoproduct.unique (𝒜.identityˡ , ≈f) (𝒜.identityˡ , ≈g)) } } module F[A+B]-isCoproduct = IsCoproduct (F-resp-+ A+B-isCoproduct) module G[A+B′]-isCoproduct = IsCoproduct (G-resp-+ A+B′-isCoproduct) F-resp-coeq′ : {A B C : 𝒜×ℬ.Obj} {(f , f′) (g , g′) : 𝒜×ℬ.U [ A , B ]} {(h , h′) : 𝒜×ℬ.U [ B , C ]} → IsCoequalizer 𝒜×ℬ.U (f , f′) (g , g′) (h , h′) → IsCoequalizer 𝒞×𝒟.U (F.₁ f , G.₁ f′) (F.₁ g , G.₁ g′) (F.₁ h , G.₁ h′) F-resp-coeq′ {_} {_} {_} {f , f′} {g , g′} {h , h′} h,h′-isCoequalizer = record { equality = F[h]-isCoequalizer.equality , G[h′]-isCoequalizer.equality ; coequalize = map F[h]-isCoequalizer.coequalize G[h′]-isCoequalizer.coequalize ; universal = F[h]-isCoequalizer.universal , G[h′]-isCoequalizer.universal ; unique = map F[h]-isCoequalizer.unique G[h′]-isCoequalizer.unique } where module h,h′-isCoequalizer = IsCoequalizer h,h′-isCoequalizer h-isCoequalizer : IsCoequalizer 𝒜.U f g h h-isCoequalizer = record { equality = proj₁ h,h′-isCoequalizer.equality ; coequalize = λ { eq → proj₁ (h,h′-isCoequalizer.coequalize (eq , proj₂ h,h′-isCoequalizer.equality)) } ; universal = proj₁ h,h′-isCoequalizer.universal ; unique = λ { ≈h → proj₁ (h,h′-isCoequalizer.unique (≈h , ℬ.Equiv.sym ℬ.identityˡ)) } } h′-isCoequalizer : IsCoequalizer ℬ.U f′ g′ h′ h′-isCoequalizer = record { equality = proj₂ h,h′-isCoequalizer.equality ; coequalize = λ { eq′ → proj₂ (h,h′-isCoequalizer.coequalize (proj₁ h,h′-isCoequalizer.equality , eq′)) } ; universal = proj₂ h,h′-isCoequalizer.universal ; unique = λ { ≈h′ → proj₂ (h,h′-isCoequalizer.unique (𝒜.Equiv.sym 𝒜.identityˡ , ≈h′)) } } module F[h]-isCoequalizer = IsCoequalizer (F-resp-coeq h-isCoequalizer) module G[h′]-isCoequalizer = IsCoequalizer (G-resp-coeq h′-isCoequalizer) _×₁_ : {𝒜 ℬ 𝒞 𝒟 : FinitelyCocompleteCategory o ℓ e} → RightExactFunctor 𝒜 𝒞 → RightExactFunctor ℬ 𝒟 → RightExactFunctor (𝒜 × ℬ) (𝒞 × 𝒟) F ×₁ G = record { F = F.F ⁂ G.F ; isRightExact = IsRightExact-⁂ F.F G.F F.isRightExact G.isRightExact } where module F = RightExactFunctor F module G = RightExactFunctor G FinitelyCocompletes-Products : {𝒞 𝒟 : FinitelyCocompleteCategory o ℓ e} → Product FinitelyCocompletes 𝒞 𝒟 FinitelyCocompletes-Products {𝒞} {𝒟} = record { A×B = 𝒞 × 𝒟 ; π₁ = rightexact πˡ (πˡ-RightExact 𝒞 𝒟) ; π₂ = rightexact πʳ (πʳ-RightExact 𝒞 𝒟) ; ⟨_,_⟩ = λ { (rightexact F isF) (rightexact G isG) → rightexact (F ※ G) (IsRightExact-※ F G isF isG) } ; project₁ = λ { {_} {rightexact F _} {rightexact G _} → Cats.project₁ {h = F} {i = G} } ; project₂ = λ { {_} {rightexact F _} {rightexact G _} → Cats.project₂ {h = F} {i = G} } ; unique = Cats.unique } where module 𝒞 = FinitelyCocompleteCategory 𝒞 module 𝒟 = FinitelyCocompleteCategory 𝒟 module Cats = BinaryProducts Products.Cats-has-all FinitelyCocompletes-BinaryProducts : BinaryProducts FinitelyCocompletes FinitelyCocompletes-BinaryProducts = record { product = FinitelyCocompletes-Products } FinitelyCocompletes-Cartesian : Cartesian FinitelyCocompletes FinitelyCocompletes-Cartesian = record  { terminal = record { ⊤ = One-FCC ; ⊤-is-terminal = _ } ; products = FinitelyCocompletes-BinaryProducts }