{-# OPTIONS --without-K --safe #-} module Category.Instance.Preorder.Primitive.Monoidals.Strong where import Preorder.Primitive.MonotoneMap as MonotoneMap using (_≃_; module ≃) open import Categories.Category using (Category) open import Categories.Category.Helper using (categoryHelper) open import Category.Instance.Preorder.Primitive.Preorders using (Preorders) open import Level using (Level; suc; _⊔_) open import Preorder.Primitive using (module Isomorphism) open import Preorder.Primitive.Monoidal using (MonoidalPreorder) open import Preorder.Primitive.MonotoneMap.Monoidal.Strong using (MonoidalMonotone) open import Relation.Binary using (IsEquivalence) module _ {c₁ c₂ ℓ₁ ℓ₂ : Level} {A : MonoidalPreorder c₁ ℓ₁} {B : MonoidalPreorder c₂ ℓ₂} where -- Pointwise equality of monoidal monotone maps open MonoidalMonotone using (F) _≃_ : (f g : MonoidalMonotone A B) → Set (c₁ ⊔ ℓ₂) f ≃ g = F f MonotoneMap.≃ F g infix 4 _≃_ ≃-isEquivalence : IsEquivalence _≃_ ≃-isEquivalence = let open MonotoneMap.≃ in record { refl = λ {x} → refl {x = F x} ; sym = λ {f g} → sym {x = F f} {y = F g} ; trans = λ {f g h} → trans {i = F f} {j = F g} {k = F h} } module ≃ = IsEquivalence ≃-isEquivalence private identity : {c ℓ : Level} (A : MonoidalPreorder c ℓ) → MonoidalMonotone A A identity A = record { F = Category.id (Preorders _ _) ; ε = ≅.refl ; ⊗-homo = λ p₁ p₂ → ≅.refl {p₁ ⊗ p₂} } where open MonoidalPreorder A open Isomorphism U using (module ≅) compose : {c ℓ : Level} {P Q R : MonoidalPreorder c ℓ} → MonoidalMonotone Q R → MonoidalMonotone P Q → MonoidalMonotone P R compose {R = R} G F = record { F = let open Category (Preorders _ _) in G.F ∘ F.F ; ε = ≅.trans G.ε (G.map-resp-≅ F.ε) ; ⊗-homo = λ p₁ p₂ → ≅.trans (G.⊗-homo (F.map p₁) (F.map p₂)) (G.map-resp-≅ (F.⊗-homo p₁ p₂)) } where module F = MonoidalMonotone F module G = MonoidalMonotone G open MonoidalPreorder R open Isomorphism U using (module ≅) compose-resp-≃ : {c ℓ : Level} {A B C : MonoidalPreorder c ℓ} {f h : MonoidalMonotone B C} {g i : MonoidalMonotone A B} → f ≃ h → g ≃ i → compose f g ≃ compose h i compose-resp-≃ {C = C} {f = f} {g} {h} {i} = ∘-resp-≈ {f = F f} {F g} {F h} {F i} where open Category (Preorders _ _) open MonoidalMonotone using (F) Monoidals : (c ℓ : Level) → Category (suc (c ⊔ ℓ)) (c ⊔ ℓ) (c ⊔ ℓ) Monoidals c ℓ = categoryHelper record { Obj = MonoidalPreorder c ℓ ; _⇒_ = MonoidalMonotone ; _≈_ = _≃_ ; id = λ {A} → identity A ; _∘_ = compose ; assoc = λ {f = f} {g h} → ≃.refl {x = compose (compose h g) f} ; identityˡ = λ {f = f} → ≃.refl {x = f} ; identityʳ = λ {f = f} → ≃.refl {x = f} ; equiv = ≃-isEquivalence ; ∘-resp-≈ = λ {f = f} {g h i} → compose-resp-≃ {f = f} {g} {h} {i} } where open MonoidalMonotone using (F)