{-# OPTIONS --without-K --safe #-} open import Level using (Level) module Category.Instance.Properties.FinitelyCocompletes {o ℓ e : Level} where import Categories.Morphism.Reasoning as ⇒-Reasoning open import Categories.Category.BinaryProducts using (BinaryProducts) open import Categories.Category.Cartesian.Bundle using (CartesianCategory) open import Categories.Category.Product using (Product) renaming (_⁂_ to _⁂′_) open import Categories.Diagram.Coequalizer using (IsCoequalizer) open import Categories.Functor.Core using (Functor) open import Categories.Functor using (_∘F_) renaming (id to idF) open import Categories.Object.Coproduct using (IsCoproduct; IsCoproduct⇒Coproduct; Coproduct) open import Categories.Object.Initial using (IsInitial) open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory) open import Category.Instance.FinitelyCocompletes {o} {ℓ} {e} using (FinitelyCocompletes; FinitelyCocompletes-Cartesian; _×₁_) open import Data.Product.Base using (_,_) renaming (_×_ to _×′_) open import Functor.Exact using (IsRightExact; RightExactFunctor) open import Level using (_⊔_; suc) FinitelyCocompletes-CC : CartesianCategory (suc (o ⊔ ℓ ⊔ e)) (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e) FinitelyCocompletes-CC = record { U = FinitelyCocompletes ; cartesian = FinitelyCocompletes-Cartesian } module FinCoCom = CartesianCategory FinitelyCocompletes-CC open BinaryProducts (FinCoCom.products) using (_×_; π₁; π₂; _⁂_; assocˡ) -- hiding (unique) module _ (𝒞 : FinitelyCocompleteCategory o ℓ e) where private module 𝒞 = FinitelyCocompleteCategory 𝒞 module 𝒞×𝒞 = FinitelyCocompleteCategory (𝒞 × 𝒞) open 𝒞 using ([_,_]; +-unique; i₁; i₂; _∘_; _+_; module Equiv; _⇒_; _+₁_; -+-) open Equiv module -+- = Functor -+- +-resp-⊥ : {(A , B) : 𝒞×𝒞.Obj} → IsInitial 𝒞×𝒞.U (A , B) → IsInitial 𝒞.U (A + B) +-resp-⊥ {A , B} A,B-isInitial = record { ! = [ A-isInitial.! , B-isInitial.! ] ; !-unique = λ { f → +-unique (sym (A-isInitial.!-unique (f ∘ i₁))) (sym (B-isInitial.!-unique (f ∘ i₂))) } } where open IsRightExact open RightExactFunctor module A-isInitial = IsInitial (F-resp-⊥ (isRightExact (π₁ {𝒞} {𝒞})) A,B-isInitial) module B-isInitial = IsInitial (F-resp-⊥ (isRightExact (π₂ {𝒞} {𝒞})) A,B-isInitial) +-resp-+ : {(A₁ , A₂) (B₁ , B₂) (C₁ , C₂) : 𝒞×𝒞.Obj} {(i₁-₁ , i₁-₂) : (A₁ ⇒ C₁) ×′ (A₂ ⇒ C₂)} {(i₂-₁ , i₂-₂) : (B₁ ⇒ C₁) ×′ (B₂ ⇒ C₂)} → IsCoproduct 𝒞×𝒞.U (i₁-₁ , i₁-₂) (i₂-₁ , i₂-₂) → IsCoproduct 𝒞.U (i₁-₁ +₁ i₁-₂) (i₂-₁ +₁ i₂-₂) +-resp-+ {A₁ , A₂} {B₁ , B₂} {C₁ , C₂} {i₁-₁ , i₁-₂} {i₂-₁ , i₂-₂} isCoproduct = record { [_,_] = λ { h₁ h₂ → [ Coprod₁.[ h₁ ∘ i₁ , h₂ ∘ i₁ ] , Coprod₂.[ h₁ ∘ i₂ , h₂ ∘ i₂ ] ] } ; inject₁ = inject₁ ; inject₂ = inject₂ ; unique = unique } where open IsRightExact open RightExactFunctor module Coprod₁ = Coproduct (IsCoproduct⇒Coproduct 𝒞.U (F-resp-+ (isRightExact (π₁ {𝒞} {𝒞})) isCoproduct)) module Coprod₂ = Coproduct (IsCoproduct⇒Coproduct 𝒞.U (F-resp-+ (isRightExact (π₂ {𝒞} {𝒞})) isCoproduct)) open 𝒞 using ([]-cong₂; []∘+₁; +-g-η; +₁∘i₁; +₁∘i₂) open 𝒞 using (Obj; _≈_; module HomReasoning; assoc) open HomReasoning open ⇒-Reasoning 𝒞.U inject₁ : {X : Obj} {h₁ : A₁ + A₂ ⇒ X} {h₂ : B₁ + B₂ ⇒ X} → [ Coprod₁.[ h₁ ∘ i₁ , h₂ ∘ i₁ ] , Coprod₂.[ h₁ ∘ i₂ , h₂ ∘ i₂ ] ] ∘ (i₁-₁ +₁ i₁-₂) ≈ h₁ inject₁ {_} {h₁} {h₂} = begin [ Coprod₁.[ h₁ ∘ i₁ , h₂ ∘ i₁ ] , Coprod₂.[ h₁ ∘ i₂ , h₂ ∘ i₂ ] ] ∘ (i₁-₁ +₁ i₁-₂) ≈⟨ []∘+₁ ⟩ [ Coprod₁.[ h₁ ∘ i₁ , h₂ ∘ i₁ ] ∘ i₁-₁ , Coprod₂.[ h₁ ∘ i₂ , h₂ ∘ i₂ ] ∘ i₁-₂ ] ≈⟨ []-cong₂ Coprod₁.inject₁ Coprod₂.inject₁ ⟩ [ h₁ ∘ i₁ , h₁ ∘ i₂ ] ≈⟨ +-g-η ⟩ h₁ ∎ inject₂ : {X : Obj} {h₁ : A₁ + A₂ ⇒ X} {h₂ : B₁ + B₂ ⇒ X} → [ Coprod₁.[ h₁ ∘ i₁ , h₂ ∘ i₁ ] , Coprod₂.[ h₁ ∘ i₂ , h₂ ∘ i₂ ] ] ∘ (i₂-₁ +₁ i₂-₂) ≈ h₂ inject₂ {_} {h₁} {h₂} = begin [ Coprod₁.[ h₁ ∘ i₁ , h₂ ∘ i₁ ] , Coprod₂.[ h₁ ∘ i₂ , h₂ ∘ i₂ ] ] ∘ (i₂-₁ +₁ i₂-₂) ≈⟨ []∘+₁ ⟩ [ Coprod₁.[ h₁ ∘ i₁ , h₂ ∘ i₁ ] ∘ i₂-₁ , Coprod₂.[ h₁ ∘ i₂ , h₂ ∘ i₂ ] ∘ i₂-₂ ] ≈⟨ []-cong₂ Coprod₁.inject₂ Coprod₂.inject₂ ⟩ [ h₂ ∘ i₁ , h₂ ∘ i₂ ] ≈⟨ +-g-η ⟩ h₂ ∎ unique : {X : Obj} {i : C₁ + C₂ ⇒ X} {h₁ : A₁ + A₂ ⇒ X} {h₂ : B₁ + B₂ ⇒ X} (eq₁ : i ∘ (i₁-₁ +₁ i₁-₂) ≈ h₁) (eq₂ : i ∘ (i₂-₁ +₁ i₂-₂) ≈ h₂) → [ Coprod₁.[ h₁ ∘ i₁ , h₂ ∘ i₁ ] , Coprod₂.[ h₁ ∘ i₂ , h₂ ∘ i₂ ] ] ≈ i unique {X} {i} {h₁} {h₂} eq₁ eq₂ = begin [ Coprod₁.[ h₁ ∘ i₁ , h₂ ∘ i₁ ] , Coprod₂.[ h₁ ∘ i₂ , h₂ ∘ i₂ ] ] ≈⟨ []-cong₂ (Coprod₁.unique eq₁-₁ eq₂-₁) (Coprod₂.unique eq₁-₂ eq₂-₂) ⟩ [ i ∘ i₁ , i ∘ i₂ ] ≈⟨ +-g-η ⟩ i ∎ where eq₁-₁ : (i ∘ i₁) ∘ i₁-₁ ≈ h₁ ∘ i₁ eq₁-₁ = begin (i ∘ i₁) ∘ i₁-₁ ≈⟨ pushʳ +₁∘i₁ ⟨ i ∘ (i₁-₁ +₁ i₁-₂) ∘ i₁ ≈⟨ pullˡ eq₁ ⟩ h₁ ∘ i₁ ∎ eq₂-₁ : (i ∘ i₁) ∘ i₂-₁ ≈ h₂ ∘ i₁ eq₂-₁ = begin (i ∘ i₁) ∘ i₂-₁ ≈⟨ pushʳ +₁∘i₁ ⟨ i ∘ (i₂-₁ +₁ i₂-₂) ∘ i₁ ≈⟨ pullˡ eq₂ ⟩ h₂ ∘ i₁ ∎ eq₁-₂ : (i ∘ i₂) ∘ i₁-₂ ≈ h₁ ∘ i₂ eq₁-₂ = begin (i ∘ i₂) ∘ i₁-₂ ≈⟨ pushʳ +₁∘i₂ ⟨ i ∘ (i₁-₁ +₁ i₁-₂) ∘ i₂ ≈⟨ pullˡ eq₁ ⟩ h₁ ∘ i₂ ∎ eq₂-₂ : (i ∘ i₂) ∘ i₂-₂ ≈ h₂ ∘ i₂ eq₂-₂ = begin (i ∘ i₂) ∘ i₂-₂ ≈⟨ pushʳ +₁∘i₂ ⟨ i ∘ (i₂-₁ +₁ i₂-₂) ∘ i₂ ≈⟨ pullˡ eq₂ ⟩ h₂ ∘ i₂ ∎ +-resp-coeq : {(A₁ , A₂) (B₁ , B₂) (C₁ , C₂) : 𝒞×𝒞.Obj} {(f₁ , f₂) (g₁ , g₂) : (A₁ ⇒ B₁) ×′ (A₂ ⇒ B₂)} {(h₁ , h₂) : (B₁ ⇒ C₁) ×′ (B₂ ⇒ C₂)} → IsCoequalizer 𝒞×𝒞.U (f₁ , f₂) (g₁ , g₂) (h₁ , h₂) → IsCoequalizer 𝒞.U (f₁ +₁ f₂) (g₁ +₁ g₂) (h₁ +₁ h₂) +-resp-coeq {A₁ , A₂} {B₁ , B₂} {C₁ , C₂} {f₁ , f₂} {g₁ , g₂} {h₁ , h₂} isCoeq = record { equality = sym -+-.homomorphism ○ []-cong₂ (refl⟩∘⟨ Coeq₁.equality) (refl⟩∘⟨ Coeq₂.equality) ○ -+-.homomorphism ; coequalize = coequalize ; universal = universal _ ; unique = uniq _ } where open IsRightExact open RightExactFunctor module Coeq₁ = IsCoequalizer (F-resp-coeq (isRightExact (π₁ {𝒞} {𝒞})) isCoeq) module Coeq₂ = IsCoequalizer (F-resp-coeq (isRightExact (π₂ {𝒞} {𝒞})) isCoeq) open 𝒞 using ([]-cong₂; +₁∘i₁; +₁∘i₂; []∘+₁; +-g-η) open 𝒞 using (Obj; _≈_; module HomReasoning; assoc; sym-assoc) open 𝒞.HomReasoning open ⇒-Reasoning 𝒞.U module _ {X : Obj} {k : B₁ + B₂ ⇒ X} (eq : k ∘ (f₁ +₁ f₂) ≈ k ∘ (g₁ +₁ g₂)) where eq₁ : (k ∘ i₁) ∘ f₁ ≈ (k ∘ i₁) ∘ g₁ eq₁ = begin (k ∘ i₁) ∘ f₁ ≈⟨ pushʳ +₁∘i₁ ⟨ k ∘ (f₁ +₁ f₂) ∘ i₁ ≈⟨ extendʳ eq ⟩ k ∘ (g₁ +₁ g₂) ∘ i₁ ≈⟨ pushʳ +₁∘i₁ ⟩ (k ∘ i₁) ∘ g₁ ∎ eq₂ : (k ∘ i₂) ∘ f₂ ≈ (k ∘ i₂) ∘ g₂ eq₂ = begin (k ∘ i₂) ∘ f₂ ≈⟨ pushʳ +₁∘i₂ ⟨ k ∘ (f₁ +₁ f₂) ∘ i₂ ≈⟨ extendʳ eq ⟩ k ∘ (g₁ +₁ g₂) ∘ i₂ ≈⟨ pushʳ +₁∘i₂ ⟩ (k ∘ i₂) ∘ g₂ ∎ coequalize : C₁ + C₂ ⇒ X coequalize = [ Coeq₁.coequalize eq₁ , Coeq₂.coequalize eq₂ ] universal : k ≈ coequalize ∘ (h₁ +₁ h₂) universal = begin k ≈⟨ +-g-η ⟨ [ k ∘ i₁ , k ∘ i₂ ] ≈⟨ []-cong₂ Coeq₁.universal Coeq₂.universal ⟩ [ Coeq₁.coequalize eq₁ ∘ h₁ , Coeq₂.coequalize eq₂ ∘ h₂ ] ≈⟨ []∘+₁ ⟨ coequalize ∘ (h₁ +₁ h₂) ∎ uniq : {i : C₁ + C₂ ⇒ X} → k ≈ i ∘ (h₁ +₁ h₂) → i ≈ coequalize uniq {i} eq′ = begin i ≈⟨ +-g-η ⟨ [ i ∘ i₁ , i ∘ i₂ ] ≈⟨ []-cong₂ (Coeq₁.unique eq₁′) (Coeq₂.unique eq₂′) ⟩ [ Coeq₁.coequalize eq₁ , Coeq₂.coequalize eq₂ ] ∎ where eq₁′ : k ∘ i₁ ≈ (i ∘ i₁) ∘ h₁ eq₁′ = eq′ ⟩∘⟨refl ○ extendˡ +₁∘i₁ eq₂′ : k ∘ i₂ ≈ (i ∘ i₂) ∘ h₂ eq₂′ = eq′ ⟩∘⟨refl ○ extendˡ +₁∘i₂ module _ {𝒞 : FinitelyCocompleteCategory o ℓ e} where open FinCoCom using (_⇒_; _∘_; id) module 𝒞 = FinitelyCocompleteCategory 𝒞 -+- : 𝒞 × 𝒞 ⇒ 𝒞 -+- = record { F = 𝒞.-+- ; isRightExact = record { F-resp-⊥ = +-resp-⊥ 𝒞 ; F-resp-+ = +-resp-+ 𝒞 ; F-resp-coeq = +-resp-coeq 𝒞 } } [x+y]+z : (𝒞 × 𝒞) × 𝒞 ⇒ 𝒞 [x+y]+z = -+- ∘ (-+- ×₁ id) x+[y+z] : (𝒞 × 𝒞) × 𝒞 ⇒ 𝒞 x+[y+z] = -+- ∘ (id ×₁ -+-) ∘ assocˡ