{-# OPTIONS --without-K --safe #-} module Category.Instance.SymMonPre where import Category.Instance.MonoidalPreorders as MP using (_≗_; module ≗) open import Categories.Category using (Category) open import Categories.Category.Helper using (categoryHelper) open import Category.Instance.MonoidalPreorders using (MonoidalPreorders) open import Level using (Level; suc; _⊔_) open import Preorder.Monoidal using (SymmetricMonoidalPreorder; SymmetricMonoidalMonotone) open import Relation.Binary using (IsEquivalence) private identity : {c ℓ e : Level} (A : SymmetricMonoidalPreorder c ℓ e) → SymmetricMonoidalMonotone A A identity {c} {ℓ} {e} A = record { monoidalMonotone = id {monoidalPreorder} } where open SymmetricMonoidalPreorder A using (monoidalPreorder) open Category (MonoidalPreorders c ℓ e) using (id) compose : {c ℓ e : Level} {P Q R : SymmetricMonoidalPreorder c ℓ e} → SymmetricMonoidalMonotone Q R → SymmetricMonoidalMonotone P Q → SymmetricMonoidalMonotone P R compose {c} {ℓ} {e} {R = R} G F = record { monoidalMonotone = G.monoidalMonotone ∘ F.monoidalMonotone } where module G = SymmetricMonoidalMonotone G module F = SymmetricMonoidalMonotone F open Category (MonoidalPreorders c ℓ e) using (_∘_) module _ {c₁ c₂ ℓ₁ ℓ₂ e₁ e₂ : Level} {A : SymmetricMonoidalPreorder c₁ ℓ₁ e₁} {B : SymmetricMonoidalPreorder c₂ ℓ₂ e₂} where open SymmetricMonoidalMonotone using () renaming (monoidalMonotone to mM) -- Pointwise equality of symmetric monoidal monotone maps _≗_ : (f g : SymmetricMonoidalMonotone A B) → Set (c₁ ⊔ ℓ₂) f ≗ g = mM f MP.≗ mM g infix 4 _≗_ ≗-isEquivalence : IsEquivalence _≗_ ≗-isEquivalence = let open MP.≗ in record { refl = λ {x} → refl {x = mM x} ; sym = λ {f g} → sym {x = mM f} {y = mM g} ; trans = λ {f g h} → trans {i = mM f} {j = mM g} {k = mM h} } module ≗ = IsEquivalence ≗-isEquivalence -- The category of symmetric monoidal preorders SymMonPre : (c ℓ e : Level) → Category (suc (c ⊔ ℓ ⊔ e)) (c ⊔ ℓ ⊔ e) (c ⊔ ℓ) SymMonPre c ℓ e = categoryHelper record { Obj = SymmetricMonoidalPreorder c ℓ e ; _⇒_ = SymmetricMonoidalMonotone ; _≈_ = _≗_ ; id = λ {A} → identity A ; _∘_ = λ {A B C} f g → compose f g ; assoc = λ {_ _ _ D _ _ _ _} → Eq.refl D ; identityˡ = λ {_ B _ _} → Eq.refl B ; identityʳ = λ {_ B _ _} → Eq.refl B ; equiv = ≗-isEquivalence ; ∘-resp-≈ = λ {_ _ C _ h} f≈h g≈i → Eq.trans C f≈h (cong h g≈i) } where open SymmetricMonoidalMonotone using (cong) open SymmetricMonoidalPreorder using (refl; module Eq)