{-# OPTIONS --without-K --safe #-} module Category.Instance.SymMonPre.Primitive where import Category.Instance.MonoidalPreorders.Primitive as MP using (_≃_; module ≃) open import Categories.Category using (Category) open import Categories.Category.Helper using (categoryHelper) open import Category.Instance.MonoidalPreorders.Primitive using (MonoidalPreorders) open import Level using (Level; suc; _⊔_) open import Preorder.Primitive.Monoidal using (SymmetricMonoidalPreorder; SymmetricMonoidalMonotone) open import Relation.Binary using (IsEquivalence) module _ {c₁ c₂ ℓ₁ ℓ₂ : Level} {A : SymmetricMonoidalPreorder c₁ ℓ₁} {B : SymmetricMonoidalPreorder c₂ ℓ₂} where open SymmetricMonoidalMonotone using () renaming (monoidalMonotone to mM) -- Pointwise isomorphism of symmetric monoidal monotone maps _≃_ : (f g : SymmetricMonoidalMonotone A B) → Set (c₁ ⊔ ℓ₂) f ≃ g = mM f MP.≃ mM g infix 4 _≃_ ≃-isEquivalence : IsEquivalence _≃_ ≃-isEquivalence = let open MP.≃ in record { refl = λ {x} → refl {x = mM x} ; sym = λ {f g} → sym {x = mM f} {y = mM g} ; trans = λ {f g h} → trans {i = mM f} {j = mM g} {k = mM h} } module ≃ = IsEquivalence ≃-isEquivalence private identity : {c ℓ : Level} (A : SymmetricMonoidalPreorder c ℓ) → SymmetricMonoidalMonotone A A identity {c} {ℓ} A = record { monoidalMonotone = id {monoidalPreorder} } where open SymmetricMonoidalPreorder A using (monoidalPreorder) open Category (MonoidalPreorders c ℓ) using (id) compose : {c ℓ : Level} {P Q R : SymmetricMonoidalPreorder c ℓ} → SymmetricMonoidalMonotone Q R → SymmetricMonoidalMonotone P Q → SymmetricMonoidalMonotone P R compose {c} {ℓ} {R = R} G F = record { monoidalMonotone = G.monoidalMonotone ∘ F.monoidalMonotone } where module G = SymmetricMonoidalMonotone G module F = SymmetricMonoidalMonotone F open Category (MonoidalPreorders c ℓ) using (_∘_) compose-resp-≃ : {c ℓ : Level} {A B C : SymmetricMonoidalPreorder c ℓ} {f h : SymmetricMonoidalMonotone B C} {g i : SymmetricMonoidalMonotone A B} → f ≃ h → g ≃ i → compose f g ≃ compose h i compose-resp-≃ {C = C} {f = f} {g} {h} {i} = ∘-resp-≈ {f = mM f} {mM g} {mM h} {mM i} where open Category (MonoidalPreorders _ _) open SymmetricMonoidalMonotone using () renaming (monoidalMonotone to mM) -- The category of symmetric monoidal preorders SymMonPre : (c ℓ : Level) → Category (suc (c ⊔ ℓ)) (c ⊔ ℓ) (c ⊔ ℓ) SymMonPre c ℓ = categoryHelper record { Obj = SymmetricMonoidalPreorder c ℓ ; _⇒_ = SymmetricMonoidalMonotone ; _≈_ = _≃_ ; id = λ {A} → identity A ; _∘_ = compose ; assoc = λ {f = f} {g h} → ≃.refl {x = compose (compose h g) f} ; identityˡ = λ {f = f} → ≃.refl {x = f} ; identityʳ = λ {f = f} → ≃.refl {x = f} ; equiv = ≃-isEquivalence ; ∘-resp-≈ = λ {f = f} {g h i} → compose-resp-≃ {f = f} {g} {h} {i} }