{-# OPTIONS --without-K --safe #-} module Coeq where open import Categories.Category.Core using (Category) open import Categories.Category.Instance.Nat using (Nat) open import Categories.Diagram.Coequalizer Nat using (IsCoequalizer) open import Categories.Object.Coproduct Nat using (Coproduct; IsCoproduct; IsCoproduct⇒Coproduct) open Category Nat -- TODO: any category ≈-i₁-i₂ : {A B A+B C : Obj} → {i₁ : A ⇒ A+B} → {i₂ : B ⇒ A+B} → (f g : A+B ⇒ C) → IsCoproduct i₁ i₂ → f ∘ i₁ ≈ g ∘ i₁ → f ∘ i₂ ≈ g ∘ i₂ → f ≈ g ≈-i₁-i₂ f g coprod ≈₁ ≈₂ = begin f ≈⟨ Equiv.sym g-η ⟩ [ f ∘ i₁ , f ∘ i₂ ] ≈⟨ []-cong₂ ≈₁ ≈₂ ⟩ [ g ∘ i₁ , g ∘ i₂ ] ≈⟨ g-η ⟩ g ∎ where open Coproduct (IsCoproduct⇒Coproduct coprod) open HomReasoning coequalizer-on-coproduct : {A B A+B C Q₁ Q₂ : Obj} → (i₁ : A ⇒ A+B) → (i₂ : B ⇒ A+B) → (f g : A+B ⇒ C) → (q₁ : C ⇒ Q₁) → (q₂ : Q₁ ⇒ Q₂) → IsCoproduct i₁ i₂ → IsCoequalizer (f ∘ i₁) (g ∘ i₁) q₁ → IsCoequalizer (q₁ ∘ f ∘ i₂) (q₁ ∘ g ∘ i₂) q₂ → IsCoequalizer f g (q₂ ∘ q₁) coequalizer-on-coproduct {C = C} {Q₁} {Q₂} i₁ i₂ f g q₁ q₂ coprod coeq₁ coeq₂ = record { equality = ≈-i₁-i₂ (q₂ ∘ q₁ ∘ f) (q₂ ∘ q₁ ∘ g) coprod (∘-resp-≈ʳ {g = q₂} X₁.equality) X₂.equality ; coequalize = λ {Q} {q} q∘f≈q∘g → let module X = Cocone {Q} {q} q∘f≈q∘g in X.u₂ ; universal = λ {Q} {q} {q∘f≈q∘g} → let module X = Cocone {Q} {q} q∘f≈q∘g in X.q≈u₂∘q₂∘q₁ ; unique = λ {Q} {q} {i} {q∘f≈q∘g} q≈i∘q₂∘q₁ → let module X = Cocone {Q} {q} q∘f≈q∘g in X.q≈i∘q₂∘q₁⇒i≈u₂ q≈i∘q₂∘q₁ } where module X₁ = IsCoequalizer coeq₁ module X₂ = IsCoequalizer coeq₂ module Cocone {Q : Obj} {q : C ⇒ Q} (q∘f≈q∘g : q ∘ f ≈ q ∘ g) where open HomReasoning u₁ : Q₁ ⇒ Q u₁ = X₁.coequalize (∘-resp-≈ˡ q∘f≈q∘g) q≈u₁∘q₁ : q ≈ u₁ ∘ q₁ q≈u₁∘q₁ = X₁.universal u₁∘q₁∘f∘i₂≈u₁∘q₁∘g∘i₂ : u₁ ∘ q₁ ∘ f ∘ i₂ ≈ u₁ ∘ q₁ ∘ g ∘ i₂ u₁∘q₁∘f∘i₂≈u₁∘q₁∘g∘i₂ = begin u₁ ∘ q₁ ∘ f ∘ i₂ ≈⟨ ∘-resp-≈ˡ (Equiv.sym q≈u₁∘q₁) ⟩ q ∘ f ∘ i₂ ≈⟨ ∘-resp-≈ˡ q∘f≈q∘g ⟩ q ∘ g ∘ i₂ ≈⟨ ∘-resp-≈ˡ q≈u₁∘q₁ ⟩ u₁ ∘ q₁ ∘ g ∘ i₂ ∎ u₂ : Q₂ ⇒ Q u₂ = X₂.coequalize u₁∘q₁∘f∘i₂≈u₁∘q₁∘g∘i₂ u₁≈u₂∘q₂ : u₁ ≈ u₂ ∘ q₂ u₁≈u₂∘q₂ = X₂.universal q≈u₂∘q₂∘q₁ : q ≈ u₂ ∘ q₂ ∘ q₁ q≈u₂∘q₂∘q₁ = begin q  ≈⟨ q≈u₁∘q₁ ⟩ u₁ ∘ q₁ ≈⟨ ∘-resp-≈ˡ u₁≈u₂∘q₂ ⟩ u₂ ∘ q₂ ∘ q₁ ∎ q≈i∘q₂∘q₁⇒i≈u₂ : {i : Q₂ ⇒ Q} → q ≈ i ∘ q₂ ∘ q₁ → i ≈ u₂ q≈i∘q₂∘q₁⇒i≈u₂ q≈i∘q₂∘q₁ = X₂.unique (Equiv.sym (X₁.unique q≈i∘q₂∘q₁))