{-# OPTIONS --without-K --safe #-} open import Categories.Category using (Category) open import Category.Cocomplete.Bundle using (FinitelyCocompleteCategory) open import Function using (flip) open import Level using (_⊔_) module Cospan {o ℓ e} (𝒞 : FinitelyCocompleteCategory o ℓ e) where open FinitelyCocompleteCategory 𝒞 open import Categories.Diagram.Duality U using (Pushout⇒coPullback) open import Categories.Diagram.Pushout U using (Pushout) open import Categories.Diagram.Pushout.Properties U using (glue; swap; pushout-resp-≈) open import Categories.Morphism U using (_≅_; module ≅) open import Categories.Morphism.Duality U using (op-≅⇒≅) open import Categories.Morphism.Reasoning U using ( switch-fromtoˡ ; glueTrianglesˡ ; id-comm ; id-comm-sym ; pullˡ ; pullʳ ; assoc²'' ; assoc²' ) import Categories.Diagram.Pullback op as Pb using (up-to-iso) private variable A B C D X Y Z : Obj f g h : A ⇒ B record Cospan (A B : Obj) : Set (o ⊔ ℓ) where field {N} : Obj f₁ : A ⇒ N f₂ : B ⇒ N compose : Cospan A B → Cospan B C → Cospan A C compose c₁ c₂ = record { f₁ = p.i₁ ∘ C₁.f₁ ; f₂ = p.i₂ ∘ C₂.f₂ } where module C₁ = Cospan c₁ module C₂ = Cospan c₂ module p = pushout C₁.f₂ C₂.f₁ identity : Cospan A A identity = record { f₁ = id ; f₂ = id } compose-3 : Cospan A B → Cospan B C → Cospan C D → Cospan A D compose-3 c₁ c₂ c₃ = record { f₁ = P₃.i₁ ∘ P₁.i₁ ∘ C₁.f₁ ; f₂ = P₃.i₂ ∘ P₂.i₂ ∘ C₃.f₂ } where module C₁ = Cospan c₁ module C₂ = Cospan c₂ module C₃ = Cospan c₃ module P₁ = pushout C₁.f₂ C₂.f₁ module P₂ = pushout C₂.f₂ C₃.f₁ module P₃ = pushout P₁.i₂ P₂.i₁ record Same (C C′ : Cospan A B) : Set (ℓ ⊔ e) where module C = Cospan C module C′ = Cospan C′ field ≅N : C.N ≅ C′.N open _≅_ ≅N public field from∘f₁≈f₁′ : from ∘ C.f₁ ≈ C′.f₁ from∘f₂≈f₂′ : from ∘ C.f₂ ≈ C′.f₂ same-refl : {C : Cospan A B} → Same C C same-refl = record { ≅N = ≅.refl ; from∘f₁≈f₁′ = identityˡ ; from∘f₂≈f₂′ = identityˡ } same-sym : {C C′ : Cospan A B} → Same C C′ → Same C′ C same-sym C≅C′ = record { ≅N = ≅.sym ≅N ; from∘f₁≈f₁′ = Equiv.sym (switch-fromtoˡ ≅N from∘f₁≈f₁′) ; from∘f₂≈f₂′ = Equiv.sym (switch-fromtoˡ ≅N from∘f₂≈f₂′) } where open Same C≅C′ same-trans : {C C′ C″ : Cospan A B} → Same C C′ → Same C′ C″ → Same C C″ same-trans C≈C′ C′≈C″ = record { ≅N = ≅.trans C≈C′.≅N C′≈C″.≅N ; from∘f₁≈f₁′ = glueTrianglesˡ C′≈C″.from∘f₁≈f₁′ C≈C′.from∘f₁≈f₁′ ; from∘f₂≈f₂′ = glueTrianglesˡ C′≈C″.from∘f₂≈f₂′ C≈C′.from∘f₂≈f₂′ } where module C≈C′ = Same C≈C′ module C′≈C″ = Same C′≈C″ glue-i₁ : (p : Pushout f g) → Pushout h (Pushout.i₁ p) → Pushout (h ∘ f) g glue-i₁ p = glue p glue-i₂ : (p₁ : Pushout f g) → Pushout (Pushout.i₂ p₁) h → Pushout f (h ∘ g) glue-i₂ p₁ p₂ = swap (glue (swap p₁) (swap p₂)) up-to-iso : (p p′ : Pushout f g) → Pushout.Q p ≅ Pushout.Q p′ up-to-iso p p′ = op-≅⇒≅ (Pb.up-to-iso (Pushout⇒coPullback p) (Pushout⇒coPullback p′)) id-unique : (p : Pushout f g) → (Pushout.universal p) (Pushout.commute p) ≈ id id-unique p = Equiv.sym (Pushout.unique p identityˡ identityˡ) pushout-f-id : Pushout f id pushout-f-id {_} {_} {f} = record { i₁ = id ; i₂ = f ; commute = id-comm-sym ; universal = λ {B} {h₁} {h₂} eq → h₁ ; unique = λ {E} {h₁} {h₂} {eq} {j} j∘i₁≈h₁ j∘i₂≈h₂ → Equiv.sym identityʳ ○ j∘i₁≈h₁ ; universal∘i₁≈h₁ = λ {E} {h₁} {h₂} {eq} → identityʳ ; universal∘i₂≈h₂ = λ {E} {h₁} {h₂} {eq} → eq ○ identityʳ } where open HomReasoning pushout-id-g : Pushout id g pushout-id-g {_} {_} {g} = record { i₁ = g ; i₂ = id ; commute = id-comm ; universal = λ {B} {h₁} {h₂} eq → h₂ ; unique = λ {E} {h₁} {h₂} {eq} {j} j∘i₁≈h₁ j∘i₂≈h₂ → Equiv.sym identityʳ ○ j∘i₂≈h₂ ; universal∘i₁≈h₁ = λ {E} {h₁} {h₂} {eq} → Equiv.sym eq ○ identityʳ ; universal∘i₂≈h₂ = λ {E} {h₁} {h₂} {eq} → identityʳ } where open HomReasoning extend-i₁-iso : {f : A ⇒ B} {g : A ⇒ C} (p : Pushout f g) (B≅D : B ≅ D) → Pushout (_≅_.from B≅D ∘ f) g extend-i₁-iso {_} {_} {_} {_} {f} {g} p B≅D = record { i₁ = P.i₁ ∘ B≅D.to ; i₂ = P.i₂ ; commute = begin (P.i₁ ∘ B≅D.to) ∘ B≅D.from ∘ f ≈⟨ assoc²'' ⟨ P.i₁ ∘ (B≅D.to ∘ B≅D.from) ∘ f ≈⟨ refl⟩∘⟨ B≅D.isoˡ ⟩∘⟨refl ⟩ P.i₁ ∘ id ∘ f ≈⟨ refl⟩∘⟨ identityˡ ⟩ P.i₁ ∘ f ≈⟨ P.commute ⟩ P.i₂ ∘ g ∎ ; universal = λ { eq → P.universal (assoc ○ eq) } ; unique = λ {_} {h₁} {_} {j} ≈₁ ≈₂ → let ≈₁′ = begin j ∘ P.i₁ ≈⟨ refl⟩∘⟨ identityʳ ⟨ j ∘ P.i₁ ∘ id ≈⟨ refl⟩∘⟨ refl⟩∘⟨ B≅D.isoˡ ⟨ j ∘ P.i₁ ∘ B≅D.to ∘ B≅D.from ≈⟨ assoc²' ⟨ (j ∘ P.i₁ ∘ B≅D.to) ∘ B≅D.from ≈⟨ ≈₁ ⟩∘⟨refl ⟩ h₁ ∘ B≅D.from ∎ in P.unique ≈₁′ ≈₂ ; universal∘i₁≈h₁ = λ {E} {h₁} {_} {eq} → begin P.universal (assoc ○ eq) ∘ P.i₁ ∘ B≅D.to ≈⟨ sym-assoc ⟩ (P.universal (assoc ○ eq) ∘ P.i₁) ∘ B≅D.to ≈⟨ P.universal∘i₁≈h₁ ⟩∘⟨refl ⟩ (h₁ ∘ B≅D.from) ∘ B≅D.to ≈⟨ assoc ⟩ h₁ ∘ B≅D.from ∘ B≅D.to ≈⟨ refl⟩∘⟨ B≅D.isoʳ ⟩ h₁ ∘ id ≈⟨ identityʳ ⟩ h₁ ∎ ; universal∘i₂≈h₂ = P.universal∘i₂≈h₂ } where module P = Pushout p module B≅D = _≅_ B≅D open HomReasoning extend-i₂-iso : {f : A ⇒ B} {g : A ⇒ C} (p : Pushout f g) (C≅D : C ≅ D) → Pushout f (_≅_.from C≅D ∘ g) extend-i₂-iso {_} {_} {_} {_} {f} {g} p C≅D = swap (extend-i₁-iso (swap p) C≅D) compose-idˡ : {C : Cospan A B} → Same (compose C identity) C compose-idˡ {_} {_} {C} = record { ≅N = ≅P ; from∘f₁≈f₁′ = begin ≅P.from ∘ P.i₁ ∘ C.f₁ ≈⟨ assoc ⟨ (≅P.from ∘ P.i₁) ∘ C.f₁ ≈⟨ P.universal∘i₁≈h₁ ⟩∘⟨refl ⟩ id ∘ C.f₁ ≈⟨ identityˡ ⟩ C.f₁ ∎ ; from∘f₂≈f₂′ = begin ≅P.from ∘ P.i₂ ∘ id ≈⟨ refl⟩∘⟨ identityʳ ⟩ ≅P.from ∘ P.i₂ ≈⟨ P.universal∘i₂≈h₂ ⟩ C.f₂ ∎ } where open HomReasoning module C = Cospan C P = pushout C.f₂ id module P = Pushout P P′ = pushout-f-id {f = C.f₂} ≅P = up-to-iso P P′ module ≅P = _≅_ ≅P compose-idʳ : {C : Cospan A B} → Same (compose identity C) C compose-idʳ {_} {_} {C} = record { ≅N = ≅P ; from∘f₁≈f₁′ = begin ≅P.from ∘ P.i₁ ∘ id ≈⟨ refl⟩∘⟨ identityʳ ⟩ ≅P.from ∘ P.i₁ ≈⟨ P.universal∘i₁≈h₁ ⟩ C.f₁ ∎ ; from∘f₂≈f₂′ = begin ≅P.from ∘ P.i₂ ∘ C.f₂ ≈⟨ assoc ⟨ (≅P.from ∘ P.i₂) ∘ C.f₂ ≈⟨ P.universal∘i₂≈h₂ ⟩∘⟨refl ⟩ id ∘ C.f₂ ≈⟨ identityˡ ⟩ C.f₂ ∎ } where open HomReasoning module C = Cospan C P = pushout id C.f₁ module P = Pushout P P′ = pushout-id-g {g = C.f₁} ≅P = up-to-iso P P′ module ≅P = _≅_ ≅P compose-id² : Same {A} (compose identity identity) identity compose-id² = compose-idˡ compose-3-right : {c₁ : Cospan A B} {c₂ : Cospan B C} {c₃ : Cospan C D} → Same (compose c₁ (compose c₂ c₃)) (compose-3 c₁ c₂ c₃) compose-3-right {_} {_} {_} {_} {c₁} {c₂} {c₃} = record { ≅N = up-to-iso P₄′ P₄ ; from∘f₁≈f₁′ = sym-assoc ○ P₄′.universal∘i₁≈h₁ ⟩∘⟨refl ○ assoc ; from∘f₂≈f₂′ = sym-assoc ○ P₄′.universal∘i₂≈h₂ ⟩∘⟨refl } where open HomReasoning module C₁ = Cospan c₁ module C₂ = Cospan c₂ module C₃ = Cospan c₃ P₁ = pushout C₁.f₂ C₂.f₁ P₂ = pushout C₂.f₂ C₃.f₁ module P₁ = Pushout P₁ module P₂ = Pushout P₂ P₃ = pushout P₁.i₂ P₂.i₁ module P₃ = Pushout P₃ P₄ = glue-i₂ P₁ P₃ module P₄ = Pushout P₄ P₄′ = pushout C₁.f₂ (P₂.i₁ ∘ C₂.f₁) module P₄′ = Pushout P₄′ compose-3-left : {c₁ : Cospan A B} {c₂ : Cospan B C} {c₃ : Cospan C D} → Same (compose (compose c₁ c₂) c₃) (compose-3 c₁ c₂ c₃) compose-3-left {_} {_} {_} {_} {c₁} {c₂} {c₃} = record { ≅N = up-to-iso P₄′ P₄ ; from∘f₁≈f₁′ = sym-assoc ○ P₄′.universal∘i₁≈h₁ ⟩∘⟨refl ; from∘f₂≈f₂′ = sym-assoc ○ P₄′.universal∘i₂≈h₂ ⟩∘⟨refl ○ assoc } where open HomReasoning module C₁ = Cospan c₁ module C₂ = Cospan c₂ module C₃ = Cospan c₃ P₁ = pushout C₁.f₂ C₂.f₁ P₂ = pushout C₂.f₂ C₃.f₁ module P₁ = Pushout P₁ module P₂ = Pushout P₂ P₃ = pushout P₁.i₂ P₂.i₁ module P₃ = Pushout P₃ P₄ = glue-i₁ P₂ P₃ module P₄ = Pushout P₄ P₄′ = pushout (P₁.i₂ ∘ C₂.f₂) C₃.f₁ module P₄′ = Pushout P₄′ compose-assoc : {c₁ : Cospan A B} {c₂ : Cospan B C} {c₃ : Cospan C D} → Same (compose c₁ (compose c₂ c₃)) (compose (compose c₁ c₂) c₃) compose-assoc = same-trans compose-3-right (same-sym compose-3-left) compose-sym-assoc : {c₁ : Cospan A B} {c₂ : Cospan B C} {c₃ : Cospan C D} → Same (compose (compose c₁ c₂) c₃) (compose c₁ (compose c₂ c₃)) compose-sym-assoc = same-trans compose-3-left (same-sym compose-3-right) compose-equiv : {c₂ c₂′ : Cospan B C} {c₁ c₁′ : Cospan A B} → Same c₂ c₂′ → Same c₁ c₁′ → Same (compose c₁ c₂) (compose c₁′ c₂′) compose-equiv {_} {_} {_} {c₂} {c₂′} {c₁} {c₁′} ≈C₂ ≈C₁ = record { ≅N = up-to-iso P P″ ; from∘f₁≈f₁′ = begin ≅P.from ∘ P.i₁ ∘ C₁.f₁ ≈⟨ assoc ⟨ (≅P.from ∘ P.i₁) ∘ C₁.f₁ ≈⟨ P.universal∘i₁≈h₁ ⟩∘⟨refl ⟩ (P′.i₁ ∘ ≈C₁.from) ∘ C₁.f₁ ≈⟨ assoc ⟩ P′.i₁ ∘ ≈C₁.from ∘ C₁.f₁ ≈⟨ refl⟩∘⟨ ≈C₁.from∘f₁≈f₁′ ⟩ P′.i₁ ∘ C₁′.f₁ ∎ ; from∘f₂≈f₂′ = begin ≅P.from ∘ P.i₂ ∘ C₂.f₂ ≈⟨ assoc ⟨ (≅P.from ∘ P.i₂) ∘ C₂.f₂ ≈⟨ P.universal∘i₂≈h₂ ⟩∘⟨refl ⟩ (P′.i₂ ∘ ≈C₂.from) ∘ C₂.f₂ ≈⟨ assoc ⟩ P′.i₂ ∘ ≈C₂.from ∘ C₂.f₂ ≈⟨ refl⟩∘⟨ ≈C₂.from∘f₂≈f₂′ ⟩ P′.i₂ ∘ C₂′.f₂ ∎ } where module C₁ = Cospan c₁ module C₁′ = Cospan c₁′ module C₂ = Cospan c₂ module C₂′ = Cospan c₂′ P = pushout C₁.f₂ C₂.f₁ P′ = pushout C₁′.f₂ C₂′.f₁ module ≈C₁ = Same ≈C₁ module ≈C₂ = Same ≈C₂ P′′ : Pushout (≈C₁.to ∘ C₁′.f₂) (≈C₂.to ∘ C₂′.f₁) P′′ = extend-i₂-iso (extend-i₁-iso P′ (≅.sym ≈C₁.≅N)) (≅.sym ≈C₂.≅N) P″ : Pushout C₁.f₂ C₂.f₁ P″ = pushout-resp-≈ P′′ (Equiv.sym (switch-fromtoˡ ≈C₁.≅N ≈C₁.from∘f₂≈f₂′)) (Equiv.sym (switch-fromtoˡ ≈C₂.≅N ≈C₂.from∘f₁≈f₁′)) module P = Pushout P module P′ = Pushout P′ ≅P : P.Q ≅ P′.Q ≅P = up-to-iso P P″ module ≅P = _≅_ ≅P open HomReasoning Cospans : Category o (o ⊔ ℓ) (ℓ ⊔ e) Cospans = record { Obj = Obj ; _⇒_ = Cospan ; _≈_ = Same ; id = identity ; _∘_ = flip compose ; assoc = compose-assoc ; sym-assoc = compose-sym-assoc ; identityˡ = compose-idˡ ; identityʳ = compose-idʳ ; identity² = compose-id² ; equiv = record { refl = same-refl ; sym = same-sym ; trans = same-trans } ; ∘-resp-≈ = compose-equiv }