{-# OPTIONS --without-K --safe #-} module Data.Castable where open import Level using (Level; suc; _⊔_) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst; cong; module ≡-Reasoning) open import Relation.Binary using (Sym; Trans; _⇒_) record IsCastable {ℓ₁ ℓ₂ : Level} {A : Set ℓ₁} (B : A → Set ℓ₂) : Set (ℓ₁ ⊔ ℓ₂) where field cast : {e e′ : A} → .(e ≡ e′) → B e → B e′ cast-trans : {m n o : A} → .(eq₁ : m ≡ n) .(eq₂ : n ≡ o) (x : B m) → cast eq₂ (cast eq₁ x) ≡ cast (trans eq₁ eq₂) x cast-is-id : {m : A} .(eq : m ≡ m) (x : B m) → cast eq x ≡ x subst-is-cast : {m n : A} (eq : m ≡ n) (x : B m) → subst B eq x ≡ cast eq x infix 3 _≈[_]_ _≈[_]_ : {n m : A} → B n → .(eq : n ≡ m) → B m → Set ℓ₂ _≈[_]_ x eq y = cast eq x ≡ y ≈-reflexive : {n : A} → _≡_ ⇒ (λ xs ys → _≈[_]_ {n} xs refl ys) ≈-reflexive {n} {x} {y} eq = trans (cast-is-id refl x) eq ≈-sym : {m n : A} .{m≡n : m ≡ n} → Sym _≈[ m≡n ]_ _≈[ sym m≡n ]_ ≈-sym {m} {n} {m≡n} {x} {y} x≡y = begin cast (sym m≡n) y ≡⟨ cong (cast (sym m≡n)) x≡y ⟨ cast (sym m≡n) (cast m≡n x) ≡⟨ cast-trans m≡n (sym m≡n) x ⟩ cast (trans m≡n (sym m≡n)) x ≡⟨ cast-is-id (trans m≡n (sym m≡n)) x ⟩ x ∎ where open ≡-Reasoning ≈-trans : {m n o : A} .{m≡n : m ≡ n} .{n≡o : n ≡ o} → Trans _≈[ m≡n ]_ _≈[ n≡o ]_ _≈[ trans m≡n n≡o ]_ ≈-trans {m} {n} {o} {m≡n} {n≡o} {x} {y} {z} x≡y y≡z = begin cast (trans m≡n n≡o) x ≡⟨ cast-trans m≡n n≡o x ⟨ cast n≡o (cast m≡n x) ≡⟨ cong (cast n≡o) x≡y ⟩ cast n≡o y ≡⟨ y≡z ⟩ z ∎ where open ≡-Reasoning record Castable {ℓ₁ ℓ₂ : Level} {A : Set ℓ₁} : Set (suc (ℓ₁ ⊔ ℓ₂)) where field B : A → Set ℓ₂ isCastable : IsCastable B