{-# OPTIONS --without-K --safe #-} module DecorationFunctor.Hypergraph where import Categories.Morphism as Morphism open import Categories.Category.BinaryProducts using (module BinaryProducts) open import Categories.Category.Cartesian using (Cartesian) open import Categories.Category.Cocartesian using (Cocartesian; module BinaryCoproducts) open import Categories.Category.Core using (Category) open import Categories.Category.Instance.Nat using (Nat-Cocartesian) open import Categories.Category.Instance.Nat using (Nat) open import Categories.Category.Instance.Setoids using (Setoids) open import Categories.Category.Instance.SingletonSet using (SingletonSetoid) open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian) open import Categories.Category.Product using (_⁂_) open import Categories.Functor using () renaming (_∘F_ to _∘′_) open import Categories.Functor.Core using (Functor) open import Categories.Functor.Monoidal.Symmetric using (module Lax) open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory) open import Category.Instance.Setoids.SymmetricMonoidal using (Setoids-×) open import Category.Instance.Nat.FinitelyCocomplete using (Nat-FinitelyCocomplete) open import Data.Empty using (⊥-elim) open import Data.Fin using (#_) open import Data.Fin.Base using (Fin; splitAt; join; zero; suc; _↑ˡ_; _↑ʳ_; Fin′; toℕ; cast) open import Data.Fin.Patterns using (0F; 1F) open import Data.Fin.Permutation using (lift₀) open import Data.Fin.Properties using (splitAt-join; join-splitAt; cast-is-id; cast-trans; toℕ-cast; subst-is-cast; splitAt-↑ˡ; splitAt-↑ʳ; splitAt⁻¹-↑ˡ; ↑ˡ-injective) open import Data.Nat using (ℕ; _+_) open import Data.Product.Base using (_,_; Σ) open import Data.Product.Relation.Binary.Pointwise.NonDependent using (×-setoid) open import Data.Sum.Base using (_⊎_; map; inj₁; inj₂; swap; map₂) renaming ([_,_]′ to [_,_]) open import Data.Sum.Properties using (map-map; [,]-map; [,]-∘; [-,]-cong; [,-]-cong; [,]-cong; map-cong; swap-involutive) open import Data.Unit using (tt) open import Data.Unit.Properties using () renaming (≡-setoid to ⊤-setoid) open import Function.Base using (_∘_; id; const; case_of_; case_returning_of_) open import Function.Bundles using (Func; Inverse; _↔_; mk↔) open import Function.Construct.Composition using (_↔-∘_) open import Function.Construct.Identity using (↔-id) open import Function.Construct.Symmetry using (↔-sym) open import Level using (0ℓ; lift) open import Relation.Binary.Bundles using (Setoid) open import Relation.Binary.PropositionalEquality using (_≗_) open import Relation.Binary.PropositionalEquality.Core using (_≡_; erefl; refl; sym; trans; cong; cong₂; subst; cong-app) open import Relation.Binary.PropositionalEquality.Properties using (isEquivalence; module ≡-Reasoning; dcong₂; subst-∘) open import Relation.Nullary.Negation.Core using (¬_) open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using (products) open Cocartesian Nat-Cocartesian using (coproducts) open FinitelyCocompleteCategory Nat-FinitelyCocomplete using () renaming (symmetricMonoidalCategory to Nat-smc) open Morphism (Setoids 0ℓ 0ℓ) using (_≅_) open Lax using (SymmetricMonoidalFunctor) open BinaryProducts products using (-×-) open BinaryCoproducts coproducts using (-+-) renaming (+-assoc to Nat-+-assoc) record Hypergraph (v : ℕ) : Set where field h : ℕ a : Fin h → ℕ arity : Fin h → ℕ arity = ℕ.suc ∘ a field j : ∀ (e : Fin h) → Fin (arity e) → Fin v record Hypergraph-same {n : ℕ} (H H′ : Hypergraph n) : Set where open Hypergraph H public open Hypergraph H′ renaming (h to h′; a to a′; arity to arity′; j to j′) public field ↔h : Fin h ↔ Fin h′ open Inverse ↔h public field ≗a : a ≗ a′ ∘ to ≗arity : arity ≗ arity′ ∘ to ≗arity e = cong ℕ.suc (≗a e) field ≗j : (e : Fin h) (i : Fin (arity e)) → j e i ≡ j′ (to e) (cast (≗arity e) i) private variable n n′ m m′ o : ℕ H H′ H″ H₁ H₁′ : Hypergraph n H₂ H₂′ : Hypergraph m H₃ : Hypergraph o Hypergraph-same-refl : Hypergraph-same H H Hypergraph-same-refl {_} {H} = record { ↔h = ↔-id (Fin h) ; ≗a = cong a ∘ erefl ; ≗j = λ e i → cong (j e) (sym (cast-is-id refl i)) } where open Hypergraph H Hypergraph-same-sym : Hypergraph-same H H′ → Hypergraph-same H′ H Hypergraph-same-sym {V} {H} {H′} ≡H = record { ↔h = ↔-sym ↔h ; ≗a = sym ∘ a∘from≗a′ ; ≗j = ≗j′ } where open Hypergraph-same ≡H open ≡-Reasoning a∘from≗a′ : a ∘ from ≗ a′ a∘from≗a′ x = begin (a ∘ from) x ≡⟨ (≗a ∘ from) x ⟩ (a′ ∘ to ∘ from) x ≡⟨ (cong a′ ∘ inverseˡ ∘ erefl ∘ from) x ⟩ a′ x ∎ id≗to∘from : id ≗ to ∘ from id≗to∘from e = sym (inverseˡ refl) ≗arity′ : arity′ ≗ arity ∘ from ≗arity′ e = cong ℕ.suc (sym (a∘from≗a′ e)) ≗arity- : arity′ ≗ arity′ ∘ to ∘ from ≗arity- e = cong arity′ (id≗to∘from e) ≗j′ : (e : Fin h′) (i : Fin (arity′ e)) → j′ e i ≡ j (from e) (cast (≗arity′ e) i) ≗j′ e i = begin j′ e i ≡⟨ dcong₂ j′ (id≗to∘from e) (subst-∘ (id≗to∘from e)) ⟩ j′ (to (from e)) (subst Fin (cong arity′ (id≗to∘from e)) i) ≡⟨ cong (j′ (to (from e))) (subst-is-cast (cong arity′ (id≗to∘from e)) i) ⟩ j′ (to (from e)) (cast (cong arity′ (id≗to∘from e)) i) ≡⟨⟩ j′ (to (from e)) (cast (trans (≗arity′ e) (≗arity (from e))) i) ≡⟨ cong (j′ (to (from e))) (cast-trans (≗arity′ e) (≗arity (from e)) i) ⟨ j′ (to (from e)) (cast (≗arity (from e)) (cast (≗arity′ e) i)) ≡⟨ ≗j (from e) (cast (≗arity′ e) i) ⟨ j (from e) (cast (≗arity′ e) i) ∎ Hypergraph-same-trans : Hypergraph-same H H′ → Hypergraph-same H′ H″ → Hypergraph-same H H″ Hypergraph-same-trans ≡H₁ ≡H₂ = record { ↔h = ↔h ≡H₂ ↔-∘ ↔h ≡H₁ ; ≗a = λ { x → trans (≗a ≡H₁ x) (≗a ≡H₂ (to (↔h ≡H₁) x)) } ; ≗j = λ { e i → trans (≗j ≡H₁ e i) (≗j₂ e i) } } where open Hypergraph-same open Inverse open ≡-Reasoning ≗j₂ : (e : Fin (h ≡H₁)) (i : Fin (arity ≡H₁ e)) → j ≡H₂ (to (↔h ≡H₁) e) (cast (≗arity ≡H₁ e) i) ≡ j′ ≡H₂ (to (↔h ≡H₂) (to (↔h ≡H₁) e)) (cast (trans (≗arity ≡H₁ e) (≗arity ≡H₂ (to (↔h ≡H₁) e))) i) ≗j₂ e i = begin j ≡H₂ (to (↔h ≡H₁) e) (cast (≗arity ≡H₁ e) i) ≡⟨ ≗j ≡H₂ (to (↔h ≡H₁) e) (cast (≗arity ≡H₁ e) i) ⟩ j′ ≡H₂ (to (↔h ≡H₂) (to (↔h ≡H₁) e)) (cast (≗arity ≡H₂ (to (↔h ≡H₁) e)) (cast (≗arity ≡H₁ e) i)) ≡⟨ cong (j′ ≡H₂ (to (↔h ≡H₂) (to (↔h ≡H₁) e))) (cast-trans (≗arity ≡H₁ e) (≗arity ≡H₂ (to (↔h ≡H₁) e)) i) ⟩ j′ ≡H₂ (to (↔h ≡H₂) (to (↔h ≡H₁) e)) (cast (trans (≗arity ≡H₁ e) (≗arity ≡H₂ (to (↔h ≡H₁) e))) i) ∎ Hypergraph-setoid : ℕ → Setoid 0ℓ 0ℓ Hypergraph-setoid p = record { Carrier = Hypergraph p ; _≈_ = Hypergraph-same ; isEquivalence = record { refl = Hypergraph-same-refl ; sym = Hypergraph-same-sym ; trans = Hypergraph-same-trans } } map-nodes : (Fin n → Fin m) → Hypergraph n → Hypergraph m map-nodes f H = record { h = h ; a = a ; j = λ e i → f (j e i) } where open Hypergraph H Hypergraph-same-cong : (f : Fin n → Fin m)   → Hypergraph-same H H′ → Hypergraph-same (map-nodes f H) (map-nodes f H′) Hypergraph-same-cong f ≡H = record { ↔h = ↔h ; ≗a = ≗a ; ≗j = λ { e i → cong f (≗j e i) } } where open Hypergraph-same ≡H Hypergraph-Func : (Fin n → Fin m) → Func (Hypergraph-setoid n) (Hypergraph-setoid m) Hypergraph-Func f = record { to = map-nodes f ; cong = Hypergraph-same-cong f } F-resp-≈ : {f g : Fin n → Fin m} → f ≗ g → Hypergraph-same (map-nodes f H) (map-nodes g H) F-resp-≈ {g = g} f≗g = record { ↔h = ↔h ; ≗a = ≗a ; ≗j = λ { e i → trans (f≗g (j e i)) (cong g (≗j e i)) } } where open Hypergraph-same Hypergraph-same-refl homomorphism : (f : Fin n → Fin m) → (g : Fin m → Fin o) → Hypergraph-same (map-nodes (g ∘ f) H) (map-nodes g (map-nodes f H)) homomorphism {n} {m} {o} {H} f g = record { ↔h = ↔h ; ≗a = ≗a ; ≗j = λ e i → cong (g ∘ f) (≗j e i) } where open Hypergraph-same Hypergraph-same-refl F : Functor Nat (Setoids 0ℓ 0ℓ) F = record { F₀ = Hypergraph-setoid ; F₁ = Hypergraph-Func ; identity = λ { {n} {H} → Hypergraph-same-refl {H = H} } ; homomorphism = λ { {f = f} {g = g} → homomorphism f g } ; F-resp-≈ = λ f≗g → F-resp-≈ f≗g } -- monoidal structure empty-hypergraph : Hypergraph 0 empty-hypergraph = record { h = 0 ; a = λ () ; j = λ () } ε : Func (SingletonSetoid {0ℓ} {0ℓ}) (Hypergraph-setoid 0) ε = record { to = const empty-hypergraph ; cong = const Hypergraph-same-refl } module _ (H₁ : Hypergraph n) (H₂ : Hypergraph m) where private module H₁ = Hypergraph H₁ module H₂ = Hypergraph H₂ j+j : (e : Fin (H₁.h + H₂.h)) → Fin (ℕ.suc ([ H₁.a , H₂.a ] (splitAt H₁.h e))) → Fin (n + m) j+j e i with splitAt H₁.h e ... | inj₁ e₁ = H₁.j e₁ i ↑ˡ m ... | inj₂ e₂ = n ↑ʳ H₂.j e₂ i together : Hypergraph n → Hypergraph m → Hypergraph (n + m) together {n} {m} H₁ H₂ = record { h = h H₁ + h H₂ ; a = [ a H₁ , a H₂ ] ∘ splitAt (h H₁) ; j = j+j H₁ H₂ } where open Hypergraph +-resp-↔ : {n n′ m m′ : ℕ} → Fin n ↔ Fin n′ → Fin m ↔ Fin m′ → Fin (n + m) ↔ Fin (n′ + m′) +-resp-↔ {n} {n′} {m} {m′} ↔n ↔m = record { to = join n′ m′ ∘ map ↔n.to ↔m.to ∘ splitAt n ; from = join n m ∘ map ↔n.from ↔m.from ∘ splitAt n′ ; to-cong = cong (join n′ m′ ∘ map ↔n.to ↔m.to ∘ splitAt n) ; from-cong = cong (join n m ∘ map ↔n.from ↔m.from ∘ splitAt n′) ; inverse = (λ { refl → to∘from _ }) , λ { refl → from∘to _ } } where module ↔n = Inverse ↔n module ↔m = Inverse ↔m open ≡-Reasoning to∘from : join n′ m′ ∘ map ↔n.to ↔m.to ∘ splitAt n ∘ join n m ∘ map ↔n.from ↔m.from ∘ splitAt n′ ≗ id to∘from x = begin (join n′ m′ ∘ map ↔n.to ↔m.to ∘ splitAt n ∘ join n m ∘ map ↔n.from ↔m.from ∘ splitAt n′) x ≡⟨ cong (join n′ m′ ∘ map ↔n.to ↔m.to) (splitAt-join n m (map ↔n.from ↔m.from (splitAt n′ x))) ⟩ (join n′ m′ ∘ map ↔n.to ↔m.to ∘ map ↔n.from ↔m.from ∘ splitAt n′) x ≡⟨ cong (join n′ m′) (map-map (splitAt n′ x)) ⟩ (join n′ m′ ∘ map (↔n.to ∘ ↔n.from) (↔m.to ∘ ↔m.from) ∘ splitAt n′) x ≡⟨ cong (join n′ m′) (map-cong (λ _ → ↔n.inverseˡ refl) (λ _ → ↔m.inverseˡ refl) (splitAt n′ x)) ⟩ (join n′ m′ ∘ map id id ∘ splitAt n′) x ≡⟨ [,]-map (splitAt n′ x) ⟩ (join n′ m′ ∘ splitAt n′) x ≡⟨ join-splitAt n′ m′ x ⟩ x ∎ from∘to : join n m ∘ map ↔n.from ↔m.from ∘ splitAt n′ ∘ join n′ m′ ∘ map ↔n.to ↔m.to ∘ splitAt n ≗ id from∘to x = begin (join n m ∘ map ↔n.from ↔m.from ∘ splitAt n′ ∘ join n′ m′ ∘ map ↔n.to ↔m.to ∘ splitAt n) x ≡⟨ cong (join n m ∘ map ↔n.from ↔m.from) (splitAt-join n′ m′ (map ↔n.to ↔m.to (splitAt n x))) ⟩ (join n m ∘ map ↔n.from ↔m.from ∘ map ↔n.to ↔m.to ∘ splitAt n) x ≡⟨ cong (join n m) (map-map (splitAt n x)) ⟩ (join n m ∘ map (↔n.from ∘ ↔n.to) (↔m.from ∘ ↔m.to) ∘ splitAt n) x ≡⟨ cong (join n m) (map-cong (λ _ → ↔n.inverseʳ refl) (λ _ → ↔m.inverseʳ refl) (splitAt n x)) ⟩ (join n m ∘ map id id ∘ splitAt n) x ≡⟨ [,]-map (splitAt n x) ⟩ (join n m ∘ splitAt n) x ≡⟨ join-splitAt n m x ⟩ x ∎ together-resp-same : Hypergraph-same H₁ H₁′ → Hypergraph-same H₂ H₂′ → Hypergraph-same (together H₁ H₂) (together H₁′ H₂′) together-resp-same {n} {H₁} {H₁′} {m} {H₂} {H₂′} ≡H₁ ≡H₂ = record { ↔h = +-resp-↔ ≡H₁.↔h ≡H₂.↔h ; ≗a = ≗a ; ≗j = ≗j } where module ≡H₁ = Hypergraph-same ≡H₁ module ≡H₂ = Hypergraph-same ≡H₂ module H₁+H₂ = Hypergraph (together H₁ H₂) module H₁+H₂′ = Hypergraph (together H₁′ H₂′) open ≡-Reasoning open Inverse open Hypergraph ≗a : [ ≡H₁.a , ≡H₂.a ] ∘ splitAt ≡H₁.h ≗ [ ≡H₁.a′ , ≡H₂.a′ ] ∘ splitAt ≡H₁.h′ ∘ join ≡H₁.h′ ≡H₂.h′ ∘ map ≡H₁.to ≡H₂.to ∘ splitAt ≡H₁.h   ≗a e = begin [ ≡H₁.a , ≡H₂.a ] (splitAt ≡H₁.h e) ≡⟨ [,]-cong ≡H₁.≗a ≡H₂.≗a (splitAt ≡H₁.h e) ⟩ ([ ≡H₁.a′ ∘ ≡H₁.to , ≡H₂.a′ ∘ ≡H₂.to ] ∘ splitAt ≡H₁.h) e ≡⟨ [,]-map (splitAt ≡H₁.h e) ⟨ ([ ≡H₁.a′ , ≡H₂.a′ ] ∘ map ≡H₁.to ≡H₂.to ∘ splitAt ≡H₁.h) e ≡⟨ (cong [ ≡H₁.a′ , ≡H₂.a′ ] ∘ splitAt-join ≡H₁.h′ ≡H₂.h′ ∘ map ≡H₁.to ≡H₂.to ∘ splitAt ≡H₁.h) e ⟨ ([ ≡H₁.a′ , ≡H₂.a′ ] ∘ splitAt ≡H₁.h′ ∘ join ≡H₁.h′ ≡H₂.h′ ∘ map ≡H₁.to ≡H₂.to ∘ splitAt ≡H₁.h) e ∎ ≗arity : H₁+H₂.arity ≗ H₁+H₂′.arity ∘ join ≡H₁.h′ ≡H₂.h′ ∘ map ≡H₁.to ≡H₂.to ∘ splitAt ≡H₁.h ≗arity = cong ℕ.suc ∘ ≗a ≗j : (e : Fin H₁+H₂.h) (i : Fin (H₁+H₂.arity e)) → H₁+H₂.j e i ≡ H₁+H₂′.j (to (+-resp-↔ ≡H₁.↔h ≡H₂.↔h) e) (cast (cong ℕ.suc (≗a e)) i) ≗j e i with splitAt ≡H₁.h e ... | inj₁ e₁ rewrite splitAt-↑ˡ ≡H₁.h′ (≡H₁.to e₁) ≡H₂.h′ = cong (_↑ˡ m) (≡H₁.≗j e₁ i) ... | inj₂ e₂ rewrite splitAt-↑ʳ ≡H₁.h′ ≡H₂.h′ (≡H₂.to e₂) = cong (n ↑ʳ_) (≡H₂.≗j e₂ i) commute : (f : Fin n → Fin n′) → (g : Fin m → Fin m′) → Hypergraph-same (together (map-nodes f H₁) (map-nodes g H₂)) (map-nodes ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ splitAt n) (together H₁ H₂)) commute {n} {n′} {m} {m′} {H₁} {H₂} f g = record { ↔h = ≡H₁+H₂.↔h ; ≗a = ≡H₁+H₂.≗a ; ≗j = ≗j } where module H₁ = Hypergraph H₁ module H₂ = Hypergraph H₂ module H₁+H₂ = Hypergraph (together H₁ H₂) module ≡H₁+H₂ = Hypergraph-same {H = together H₁ H₂} Hypergraph-same-refl open Hypergraph open ≡-Reasoning ≗j : (e : Fin (H₁.h + H₂.h)) (i : Fin ((ℕ.suc ∘ [ H₁.a , H₂.a ] ∘ splitAt H₁.h) e)) → j (together (map-nodes f H₁) (map-nodes g H₂)) e i ≡ j (map-nodes ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ splitAt n) (together H₁ H₂)) (≡H₁+H₂.to e) (cast refl i) ≗j e i with splitAt H₁.h e ... | inj₁ e₁ rewrite splitAt-↑ˡ n (H₁.j e₁ (cast refl i)) m = cong ((_↑ˡ m′) ∘ f ∘ H₁.j e₁) (sym (cast-is-id refl i)) ... | inj₂ e₂ rewrite splitAt-↑ʳ n m (H₂.j e₂ (cast refl i)) = cong ((n′ ↑ʳ_) ∘ g ∘ H₂.j e₂) (sym (cast-is-id refl i)) ⊗-homomorphism : NaturalTransformation (-×- ∘′ (F ⁂ F)) (F ∘′ -+-) ⊗-homomorphism = record { η = λ { (m , n) → η } ; commute = λ { (f , g) {H₁ , H₂} → commute {H₁ = H₁} {H₂ = H₂} f g } ; sym-commute = λ { (f , g) {H₁ , H₂} → Hypergraph-same-sym (commute {H₁ = H₁} {H₂ = H₂} f g) } } where η : Func (×-setoid (Hypergraph-setoid n) (Hypergraph-setoid m)) (Hypergraph-setoid (n + m)) η = record { to = λ { (H₁ , H₂) → together H₁ H₂ } ; cong = λ { (≡H₁ , ≡H₂) → together-resp-same ≡H₁ ≡H₂ } } +-assoc-↔ : ∀ (x y z : ℕ) → Fin (x + y + z) ↔ Fin (x + (y + z)) +-assoc-↔ x y z = record { to = to ; from = from ; to-cong = λ { refl → refl } ; from-cong = λ { refl → refl } ; inverse = (λ { refl → isoˡ _ }) , λ { refl → isoʳ _ } } where module Nat = Morphism Nat open Nat._≅_ (Nat-+-assoc {x} {y} {z}) associativity : {X Y Z : ℕ} → {H₁ : Hypergraph X} → {H₂ : Hypergraph Y} → {H₃ : Hypergraph Z} → Hypergraph-same (map-nodes (Inverse.to (+-assoc-↔ X Y Z)) (together (together H₁ H₂) H₃)) (together H₁ (together H₂ H₃)) associativity {X} {Y} {Z} {H₁} {H₂} {H₃} = record { ↔h = ↔h ; ≗a = ≗a ; ≗j = ≗j } where module H₁ = Hypergraph H₁ module H₂ = Hypergraph H₂ module H₃ = Hypergraph H₃ open ≡-Reasoning open Hypergraph ↔h : Fin (H₁.h + H₂.h + H₃.h) ↔ Fin (H₁.h + (H₂.h + H₃.h)) ↔h = +-assoc-↔ H₁.h H₂.h H₃.h ≗a : (x : Fin (H₁.h + H₂.h + H₃.h)) → [ [ H₁.a , H₂.a ] ∘ splitAt H₁.h , H₃.a ] (splitAt (H₁.h + H₂.h) x) ≡ [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] (splitAt H₁.h ([ [ _↑ˡ H₂.h + H₃.h , (H₁.h ↑ʳ_) ∘ (_↑ˡ H₃.h) ] ∘ splitAt H₁.h , (H₁.h ↑ʳ_) ∘ (H₂.h ↑ʳ_) ] (splitAt (H₁.h + H₂.h) x))) ≗a x = begin ([ [ H₁.a , H₂.a ] ∘ splitAt H₁.h , H₃.a ] ∘ splitAt (H₁.h + H₂.h)) x ≡⟨⟩ ([ [ H₁.a , [ H₂.a , H₃.a ] ∘ inj₁ ] ∘ splitAt H₁.h , H₃.a ] ∘ splitAt (H₁.h + H₂.h)) x ≡⟨ [-,]-cong ([,-]-cong (cong [ H₂.a , H₃.a ] ∘ (λ i → splitAt-↑ˡ H₂.h i H₃.h)) ∘ splitAt H₁.h) (splitAt (H₁.h + H₂.h) x) ⟨ ([ [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ∘ (_↑ˡ H₃.h) ] ∘ splitAt H₁.h , H₃.a ] ∘ splitAt (H₁.h + H₂.h)) x ≡⟨ [-,]-cong ([,]-∘ [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ splitAt H₁.h) (splitAt (H₁.h + H₂.h) x) ⟨ ([ [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h , H₃.a ] ∘ splitAt (H₁.h + H₂.h)) x ≡⟨⟩ ([ [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h , [ H₂.a , H₃.a ] ∘ inj₂ ] ∘ splitAt (H₁.h + H₂.h)) x ≡⟨ [,-]-cong (cong [ H₂.a , H₃.a ] ∘ splitAt-↑ʳ H₂.h H₃.h) (splitAt (H₁.h + H₂.h) x) ⟨ ([ [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ∘ (H₂.h ↑ʳ_) ] ∘ splitAt (H₁.h + H₂.h)) x ≡⟨⟩ ([ [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h , [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ inj₂ ∘ (H₂.h ↑ʳ_) ] ∘ splitAt (H₁.h + H₂.h)) x ≡⟨ [,]-∘ [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] (splitAt (H₁.h + H₂.h) x) ⟨ ([ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ [ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h , inj₂ ∘ (H₂.h ↑ʳ_) ] ∘ splitAt (H₁.h + H₂.h)) x ≡⟨ cong [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ([,-]-cong (splitAt-↑ʳ H₁.h (H₂.h + H₃.h) ∘ (H₂.h ↑ʳ_)) (splitAt (H₁.h + H₂.h) x)) ⟨ ([ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ [ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h , splitAt H₁.h ∘ (H₁.h ↑ʳ_) ∘ (H₂.h ↑ʳ_) ] ∘ splitAt (H₁.h + H₂.h)) x ≡⟨ cong [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ([-,]-cong (splitAt-join H₁.h (H₂.h + H₃.h) ∘ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h) (splitAt (H₁.h + H₂.h) x)) ⟨ ([ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ [ splitAt H₁.h ∘ join H₁.h (H₂.h + H₃.h) ∘ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h , splitAt H₁.h ∘ (H₁.h ↑ʳ_) ∘ (H₂.h ↑ʳ_) ] ∘ splitAt (H₁.h + H₂.h)) x ≡⟨ cong [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ([,]-∘ (splitAt H₁.h) (splitAt (H₁.h + H₂.h) x)) ⟨ ([ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ splitAt H₁.h ∘ [ join H₁.h (H₂.h + H₃.h) ∘ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h , (H₁.h ↑ʳ_) ∘ (H₂.h ↑ʳ_) ] ∘ splitAt (H₁.h + H₂.h)) x ≡⟨⟩ ([ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ splitAt H₁.h ∘ [ [ _↑ˡ H₂.h + H₃.h , H₁.h ↑ʳ_ ] ∘ [ inj₁ , inj₂ ∘ (_↑ˡ H₃.h) ] ∘ splitAt H₁.h , (H₁.h ↑ʳ_) ∘ (H₂.h ↑ʳ_) ] ∘ splitAt (H₁.h + H₂.h)) x ≡⟨ cong ([ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ splitAt H₁.h) ([-,]-cong ([,]-∘ [ _↑ˡ H₂.h + H₃.h , H₁.h ↑ʳ_ ] ∘ splitAt H₁.h) (splitAt (H₁.h + H₂.h) x)) ⟩ ([ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ splitAt H₁.h ∘ [ [ _↑ˡ H₂.h + H₃.h , (H₁.h ↑ʳ_) ∘ (_↑ˡ H₃.h) ] ∘ splitAt H₁.h , (H₁.h ↑ʳ_) ∘ (H₂.h ↑ʳ_) ] ∘ splitAt (H₁.h + H₂.h)) x ∎ ≗j : (e : Fin (H₁.h + H₂.h + H₃.h)) (i : Fin (ℕ.suc ([ [ H₁.a , H₂.a ] ∘ splitAt H₁.h , H₃.a ] (splitAt (H₁.h + H₂.h) e)))) → Inverse.to (+-assoc-↔ X Y Z) (j+j (together H₁ H₂) H₃ e i) ≡ j+j H₁ (together H₂ H₃) (Inverse.to ↔h e) (cast (cong ℕ.suc (≗a e)) i) ≗j e i with splitAt (H₁.h + H₂.h) e ≗j e i | inj₁ e₁₂ with splitAt H₁.h e₁₂ ≗j e i | inj₁ e₁₂ | inj₁ e₁ rewrite splitAt-↑ˡ H₁.h e₁ (H₂.h + H₃.h) rewrite splitAt-↑ˡ (X + Y) (H₁.j e₁ i ↑ˡ Y) Z rewrite splitAt-↑ˡ X (H₁.j e₁ i) Y = cong ((_↑ˡ Y + Z) ∘ H₁.j e₁) (sym (cast-is-id refl i)) ≗j e i | inj₁ e₁₂ | inj₂ e₂ rewrite splitAt-↑ʳ H₁.h H₂.h e₂ rewrite splitAt-↑ʳ H₁.h (H₂.h + H₃.h) (e₂ ↑ˡ H₃.h) rewrite splitAt-↑ˡ H₂.h e₂ H₃.h rewrite splitAt-↑ˡ (X + Y) (X ↑ʳ H₂.j e₂ i) Z rewrite splitAt-↑ʳ X Y (H₂.j e₂ i) = cong ((X ↑ʳ_) ∘ (_↑ˡ Z) ∘ H₂.j e₂) (sym (cast-is-id refl i)) ≗j e i | inj₂ e₃ rewrite splitAt-↑ʳ H₁.h (H₂.h + H₃.h) (H₂.h ↑ʳ e₃) rewrite splitAt-↑ʳ H₂.h H₃.h e₃ rewrite splitAt-↑ʳ (X + Y) Z (H₃.j e₃ i) = cong ((X ↑ʳ_) ∘ (Y ↑ʳ_) ∘ H₃.j e₃) (sym (cast-is-id refl i)) n+0↔n : ∀ n → Fin (n + 0) ↔ Fin n n+0↔n n = record { to = to ; from = from ; to-cong = λ { refl → refl } ; from-cong = λ { refl → refl } ; inverse = (λ { refl → to∘from _ }) , λ { refl → from∘to _ } } where to : Fin (n + 0) → Fin n to x with inj₁ x₁ ← splitAt n x = x₁ from : Fin n → Fin (n + 0) from x = x ↑ˡ 0 from∘to : (x : Fin (n + 0)) → from (to x) ≡ x from∘to x with inj₁ x₁ ← splitAt n x in eq = splitAt⁻¹-↑ˡ eq to∘from : (x : Fin n) → to (from x) ≡ x to∘from x rewrite splitAt-↑ˡ n x 0 = refl unitaryʳ : Hypergraph-same (map-nodes ([ (λ x → x) , (λ ()) ] ∘ splitAt n) (together H empty-hypergraph)) H unitaryʳ {n} {H} = record { ↔h = h+0↔h ; ≗a = ≗a ; ≗j = ≗j } where module H = Hypergraph H module H+0 = Hypergraph (together H empty-hypergraph) h+0↔h : Fin H+0.h ↔ Fin H.h h+0↔h = n+0↔n H.h ≗a : (e : Fin (H.h + 0)) → [ H.a , (λ ()) ] (splitAt H.h e) ≡ H.a (Inverse.to h+0↔h e) ≗a e with inj₁ e₁ ← splitAt H.h e in eq = refl ≗j : (e : Fin (H.h + 0)) (i : Fin (ℕ.suc ([ H.a , (λ ()) ] (splitAt H.h e)))) → [ (λ x → x) , (λ ()) ] (splitAt n (j+j H empty-hypergraph e i)) ≡ H.j (Inverse.to h+0↔h e) (cast (cong ℕ.suc (≗a e)) i) ≗j e i = ≗j-aux (splitAt H.h e) refl (j+j H empty-hypergraph e) refl (≗a e) i where ≗j-aux : (w : Fin H.h ⊎ Fin 0) → (eq₁ : splitAt H.h e ≡ w) → (w₁ : Fin (ℕ.suc ([ H.a , (λ ()) ] w)) → Fin (n + 0)) → j+j H empty-hypergraph e ≡ subst (λ hole → Fin (ℕ.suc ([ H.a , (λ ()) ] hole)) → Fin (n + 0)) (sym eq₁) w₁ → (w₂ : [ H.a , (λ ()) ] w ≡ H.a (Inverse.to h+0↔h e)) (i : Fin (ℕ.suc ([ H.a , (λ ()) ] w))) → [ (λ x → x) , (λ ()) ] (splitAt n (w₁ i)) ≡ H.j (Inverse.to h+0↔h e) (cast (cong ℕ.suc w₂) i) ≗j-aux (inj₁ e₁) eq w₁ eq₁ w₂ i with (inj₁ x) ← splitAt n (w₁ i) in eq₂ rewrite eq = trans (↑ˡ-injective 0 x (H.j e₁ i) (trans (splitAt⁻¹-↑ˡ eq₂) (sym (cong-app eq₁ i)))) (cong (H.j e₁) (sym (cast-is-id refl i))) +-comm-↔ : ∀ (n m : ℕ) → Fin (n + m) ↔ Fin (m + n) +-comm-↔ n m = record { to = join m n ∘ swap ∘ splitAt n ; from = join n m ∘ swap ∘ splitAt m ; to-cong = λ { refl → refl } ; from-cong = λ { refl → refl } ; inverse = (λ { refl → to∘from _ }) , λ { refl → from∘to _ } } where open ≡-Reasoning to∘from : join m n ∘ swap ∘ splitAt n ∘ join n m ∘ swap ∘ splitAt m ≗ id to∘from x = begin (join m n ∘ swap ∘ splitAt n ∘ join n m ∘ swap ∘ splitAt m) x ≡⟨ (cong (join m n ∘ swap) ∘ splitAt-join n m ∘ swap ∘ splitAt m) x ⟩ (join m n ∘ swap ∘ swap ∘ splitAt m) x ≡⟨ (cong (join m n) ∘ swap-involutive ∘ splitAt m) x ⟩ (join m n ∘ splitAt m) x ≡⟨ join-splitAt m n x ⟩ x ∎ from∘to : join n m ∘ swap ∘ splitAt m ∘ join m n ∘ swap ∘ splitAt n ≗ id from∘to x = begin (join n m ∘ swap ∘ splitAt m ∘ join m n ∘ swap ∘ splitAt n) x ≡⟨ (cong (join n m ∘ swap) ∘ splitAt-join m n ∘ swap ∘ splitAt n) x ⟩ (join n m ∘ swap ∘ swap ∘ splitAt n) x ≡⟨ (cong (join n m) ∘ swap-involutive ∘ splitAt n) x ⟩ (join n m ∘ splitAt n) x ≡⟨ join-splitAt n m x ⟩ x ∎ [,]∘swap : {A B C : Set} {f : A → C} {g : B → C} → [ f , g ] ∘ swap ≗ [ g , f ] [,]∘swap (inj₁ x) = refl [,]∘swap (inj₂ y) = refl braiding : {n m : ℕ} {H₁ : Hypergraph n} {H₂ : Hypergraph m} → Hypergraph-same (map-nodes ([ m ↑ʳ_ , _↑ˡ n ] ∘ splitAt n) (together H₁ H₂)) (together H₂ H₁) braiding {n} {m} {H₁} {H₂} = record { ↔h = +-comm-↔ H₁.h H₂.h ; ≗a = ≗a ; ≗j = ≗j } where open ≡-Reasoning module H₁ = Hypergraph H₁ module H₂ = Hypergraph H₂ ≗a : (e : Fin (H₁.h + H₂.h)) → [ H₁.a , H₂.a ] (splitAt H₁.h e) ≡ [ H₂.a , H₁.a ] (splitAt H₂.h (join H₂.h H₁.h (swap (splitAt H₁.h e)))) ≗a e = begin [ H₁.a , H₂.a ] (splitAt H₁.h e) ≡⟨ [,]∘swap (splitAt H₁.h e) ⟨ [ H₂.a , H₁.a ] (swap (splitAt H₁.h e)) ≡⟨ cong [ H₂.a , H₁.a ] (splitAt-join H₂.h H₁.h (swap (splitAt H₁.h e))) ⟨ [ H₂.a , H₁.a ] (splitAt H₂.h (join H₂.h H₁.h (swap (splitAt H₁.h e)))) ∎ ≗j : (e : Fin (Hypergraph.h (map-nodes ([ m ↑ʳ_ , _↑ˡ n ] ∘ splitAt n) (together H₁ H₂)))) (i : Fin (Hypergraph.arity (map-nodes ([ m ↑ʳ_ , _↑ˡ n ] ∘ splitAt n) (together H₁ H₂)) e)) → Hypergraph.j (map-nodes ([ _↑ʳ_ m , _↑ˡ n ] ∘ splitAt n) (together H₁ H₂)) e i ≡ Hypergraph.j (together H₂ H₁) (Inverse.to (+-comm-↔ H₁.h H₂.h) e) (cast (cong ℕ.suc (≗a e)) i) ≗j e i with splitAt H₁.h e ≗j e i | inj₁ e₁ rewrite splitAt-↑ˡ n (H₁.j e₁ i) m rewrite splitAt-↑ʳ H₂.h H₁.h e₁ = cong ((m ↑ʳ_) ∘ H₁.j e₁) (sym (cast-is-id refl i)) ≗j e i | inj₂ e₂ rewrite splitAt-↑ʳ n m (H₂.j e₂ i) rewrite splitAt-↑ˡ H₂.h e₂ H₁.h = cong ((_↑ˡ n) ∘ H₂.j e₂) (sym (cast-is-id refl i)) hypergraph : SymmetricMonoidalFunctor Nat-smc (Setoids-× {0ℓ}) hypergraph = record { F = F ; isBraidedMonoidal = record { isMonoidal = record { ε = ε ; ⊗-homo = ntHelper record { η = λ { (m , n) → η } ; commute = λ { (f , g) {H₁ , H₂} → commute {H₁ = H₁} {H₂ = H₂} f g } } ; associativity = λ { {X} {Y} {Z} {(H₁ , H₂) , H₃} → associativity {X} {Y} {Z} {H₁} {H₂} {H₃} } ; unitaryˡ = Hypergraph-same-refl ; unitaryʳ = unitaryʳ } ; braiding-compat = λ { {X} {Y} {H₁ , H₂} → braiding {X} {Y} {H₁} {H₂} } } } where η : Func (×-setoid (Hypergraph-setoid n) (Hypergraph-setoid m)) (Hypergraph-setoid (n + m)) η = record { to = λ { (H₁ , H₂) → together H₁ H₂ } ; cong = λ { (≡H₁ , ≡H₂) → together-resp-same ≡H₁ ≡H₂ } } module F = SymmetricMonoidalFunctor hypergraph and-gate : Func (SingletonSetoid {0ℓ} {0ℓ}) (F.₀ 3) and-gate = record { to = λ { (lift tt) → and-graph } ; cong = λ { (lift tt) → Hypergraph-same-refl } } where and-graph : Hypergraph 3 and-graph = record { h = 1 ; a = λ { 0F → 3 } ; j = λ { 0F 0F → # 0 ; 0F 1F → # 1 ; 0F 2F → # 2 } }