{-# OPTIONS --without-K --safe #-} open import Level using (Level; _⊔_) module Functor.Free.Instance.Monoid {c ℓ : Level} where import Categories.Object.Monoid as MonoidObject open import Categories.Category.Construction.Monoids using (Monoids) open import Categories.Category.Instance.Setoids using (Setoids) open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory) open import Categories.Functor using (Functor) open import Categories.NaturalTransformation using (NaturalTransformation) open import Category.Instance.Setoids.SymmetricMonoidal {c} {c ⊔ ℓ} using (Setoids-×) open import Data.List.Properties using (++-assoc; ++-identityˡ; ++-identityʳ) open import Data.Opaque.List using ([]ₛ; Listₛ; ++ₛ; mapₛ) open import Data.Product using (_,_) open import Data.Setoid using (∣_∣) open import Function using (_⟶ₛ_; _⟨$⟩_) open import Functor.Instance.List {c} {ℓ} using (List) open import NaturalTransformation.Instance.EmptyList {c} {ℓ} using (⊤⇒[]) open import NaturalTransformation.Instance.ListAppend {c} {ℓ} using (++) open import Relation.Binary using (Setoid) open import Relation.Binary.PropositionalEquality as ≡ using (_≡_) module Setoids-× = SymmetricMonoidalCategory Setoids-× module ++ = NaturalTransformation ++ module ⊤⇒[] = NaturalTransformation ⊤⇒[] open Functor open MonoidObject Setoids-×.monoidal using (Monoid; IsMonoid; Monoid⇒) open IsMonoid -- the functor sending a setoid A to the monoid List A module _ (X : Setoid c ℓ) where open Setoid (List.₀ X) opaque unfolding []ₛ ++ₛ-assoc : (x y z : ∣ Listₛ X ∣) → ++ₛ ⟨$⟩ (++ₛ ⟨$⟩ (x , y) , z) ≈ ++ₛ ⟨$⟩ (x , ++ₛ ⟨$⟩ (y , z)) ++ₛ-assoc x y z = reflexive (++-assoc x y z) ++ₛ-identityˡ : (x : ∣ Listₛ X ∣) → x ≈ ++ₛ ⟨$⟩ ([]ₛ ⟨$⟩ _ , x) ++ₛ-identityˡ x = reflexive (++-identityˡ x) ++ₛ-identityʳ : (x : ∣ Listₛ X ∣) → x ≈ ++ₛ ⟨$⟩ (x , []ₛ ⟨$⟩ _) ++ₛ-identityʳ x = sym (reflexive (++-identityʳ x)) ListMonoid : IsMonoid (List.₀ X) ListMonoid .μ = ++.η X ListMonoid .η = ⊤⇒[].η X ListMonoid .assoc {(x , y) , z} = ++ₛ-assoc x y z ListMonoid .identityˡ {bro , x} = ++ₛ-identityˡ x ListMonoid .identityʳ {x , _} = ++ₛ-identityʳ x Listₘ : Setoid c ℓ → Monoid Listₘ X = record { isMonoid = ListMonoid X } mapₘ : {Aₛ Bₛ : Setoid c ℓ} (f : Aₛ ⟶ₛ Bₛ) → Monoid⇒ (Listₘ Aₛ) (Listₘ Bₛ) mapₘ f = record { arr = List.₁ f ; preserves-μ = λ {x,y} → ++.sym-commute f {x,y} ; preserves-η = ⊤⇒[].sym-commute f } Free : Functor (Setoids c ℓ) (Monoids Setoids-×.monoidal) Free .F₀ = Listₘ Free .F₁ = mapₘ Free .identity {X} = List.identity {X} Free .homomorphism {X} {Y} {Z} {f} {g} = List.homomorphism {X} {Y} {Z} {f} {g} Free .F-resp-≈ {A} {B} {f} {g} = List.F-resp-≈ {A} {B} {f} {g}