{-# OPTIONS --without-K --safe #-} open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory) module Functor.Instance.Cospan.Embed {o ℓ e} (𝒞 : FinitelyCocompleteCategory o ℓ e) where import Categories.Diagram.Pushout as DiagramPushout import Categories.Diagram.Pushout.Properties as PushoutProperties import Categories.Morphism as Morphism import Categories.Morphism.Reasoning as ⇒-Reasoning import Category.Diagram.Pushout as Pushout′ open import Categories.Category using (_[_,_]; _[_∘_]; _[_≈_]) open import Categories.Category.Core using (Category) open import Categories.Functor.Core using (Functor) open import Category.Instance.Cospans 𝒞 using (Cospans) open import Data.Product.Base using (_,_) open import Function.Base using (id) open import Functor.Instance.Cospan.Stack using (⊗) module 𝒞 = FinitelyCocompleteCategory 𝒞 module Cospans = Category Cospans open 𝒞 using (U; pushout; _+₁_) open Cospans using (_≈_) open DiagramPushout U using (Pushout) open Morphism U using (module ≅; _≅_) open PushoutProperties U using (up-to-iso) open Pushout′ U using (pushout-id-g; pushout-f-id) L₁ : {A B : 𝒞.Obj} → U [ A , B ] → Cospans [ A , B ] L₁ f = record { f₁ = f ; f₂ = 𝒞.id } L-identity : {A : 𝒞.Obj} → L₁ 𝒞.id ≈ Cospans.id {A} L-identity = record { ≅N = ≅.refl ; from∘f₁≈f₁′ = 𝒞.identity² ; from∘f₂≈f₂′ = 𝒞.identity² } L-homomorphism : {X Y Z : 𝒞.Obj} {f : U [ X , Y ]} {g : U [ Y , Z ]} → L₁ (U [ g ∘ f ]) ≈ Cospans [ L₁ g ∘ L₁ f ] L-homomorphism {X} {Y} {Z} {f} {g} = record { ≅N = up-to-iso P′ P ; from∘f₁≈f₁′ = pullˡ (P′.universal∘i₁≈h₁ {eq = P.commute}) ; from∘f₂≈f₂′ = P′.universal∘i₂≈h₂ {eq = P.commute} ○ sym 𝒞.identityʳ } where open ⇒-Reasoning U open 𝒞.HomReasoning open 𝒞.Equiv P P′ : Pushout 𝒞.id g P = pushout 𝒞.id g P′ = pushout-id-g module P = Pushout P module P′ = Pushout P′ L-resp-≈ : {A B : 𝒞.Obj} {f g : U [ A , B ]} → U [ f ≈ g ] → Cospans [ L₁ f ≈ L₁ g ] L-resp-≈ {A} {B} {f} {g} f≈g = record { ≅N = ≅.refl ; from∘f₁≈f₁′ = 𝒞.identityˡ ○ f≈g ; from∘f₂≈f₂′ = 𝒞.identity² } where open 𝒞.HomReasoning L : Functor U Cospans L = record { F₀ = id ; F₁ = L₁ ; identity = L-identity ; homomorphism = L-homomorphism ; F-resp-≈ = L-resp-≈ } R₁ : {A B : 𝒞.Obj} → U [ B , A ] → Cospans [ A , B ] R₁ g = record { f₁ = 𝒞.id ; f₂ = g } R-identity : {A : 𝒞.Obj} → R₁ 𝒞.id ≈ Cospans.id {A} R-identity = record { ≅N = ≅.refl ; from∘f₁≈f₁′ = 𝒞.identity² ; from∘f₂≈f₂′ = 𝒞.identity² } R-homomorphism : {X Y Z : 𝒞.Obj} {f : U [ Y , X ]} {g : U [ Z , Y ]} → R₁ (U [ f ∘ g ]) ≈ Cospans [ R₁ g ∘ R₁ f ] R-homomorphism {X} {Y} {Z} {f} {g} = record { ≅N = up-to-iso P′ P ; from∘f₁≈f₁′ = P′.universal∘i₁≈h₁ {eq = P.commute} ○ sym 𝒞.identityʳ ; from∘f₂≈f₂′ = pullˡ (P′.universal∘i₂≈h₂ {eq = P.commute}) } where open ⇒-Reasoning U open 𝒞.HomReasoning open 𝒞.Equiv P P′ : Pushout f 𝒞.id P = pushout f 𝒞.id P′ = pushout-f-id module P = Pushout P module P′ = Pushout P′ R-resp-≈ : {A B : 𝒞.Obj} {f g : U [ A , B ]} → U [ f ≈ g ] → Cospans [ R₁ f ≈ R₁ g ] R-resp-≈ {A} {B} {f} {g} f≈g = record { ≅N = ≅.refl ; from∘f₁≈f₁′ = 𝒞.identity² ; from∘f₂≈f₂′ = 𝒞.identityˡ ○ f≈g } where open 𝒞.HomReasoning R : Functor 𝒞.op Cospans R = record { F₀ = id ; F₁ = R₁ ; identity = R-identity ; homomorphism = R-homomorphism ; F-resp-≈ = R-resp-≈ } B₁ : {A B C : 𝒞.Obj} → U [ A , C ] → U [ B , C ] → Cospans [ A , B ] B₁ f g = record { f₁ = f ; f₂ = g } B∘L : {W X Y Z : 𝒞.Obj} {f : U [ W , X ]} {g : U [ X , Y ]} {h : U [ Z , Y ]} → Cospans [ B₁ g h ∘ L₁ f ] ≈ B₁ (U [ g ∘ f ]) h B∘L {W} {X} {Y} {Z} {f} {g} {h} = record { ≅N = up-to-iso P P′ ; from∘f₁≈f₁′ = pullˡ (P.universal∘i₁≈h₁ {eq = P′.commute}) ; from∘f₂≈f₂′ = pullˡ (P.universal∘i₂≈h₂ {eq = P′.commute}) ○ 𝒞.identityˡ } where open ⇒-Reasoning U open 𝒞.HomReasoning open 𝒞.Equiv P P′ : Pushout 𝒞.id g P = pushout 𝒞.id g P′ = pushout-id-g module P = Pushout P module P′ = Pushout P′ R∘B : {W X Y Z : 𝒞.Obj} {f : U [ W , X ]} {g : U [ Y , X ]} {h : U [ Z , Y ]} → Cospans [ R₁ h ∘ B₁ f g ] ≈ B₁ f (U [ g ∘ h ]) R∘B {W} {X} {Y} {Z} {f} {g} {h} = record { ≅N = up-to-iso P P′ ; from∘f₁≈f₁′ = pullˡ (P.universal∘i₁≈h₁ {eq = P′.commute}) ○ 𝒞.identityˡ ; from∘f₂≈f₂′ = pullˡ (P.universal∘i₂≈h₂ {eq = P′.commute}) } where open ⇒-Reasoning U open 𝒞.HomReasoning open 𝒞.Equiv P P′ : Pushout g 𝒞.id P = pushout g 𝒞.id P′ = pushout-f-id module P = Pushout P module P′ = Pushout P′ module _ where open _≅_ ≅-L-R : ∀ {X Y : 𝒞.Obj} (X≅Y : X ≅ Y) → L₁ (to X≅Y) ≈ R₁ (from X≅Y) ≅-L-R {X} {Y} X≅Y = record { ≅N = X≅Y ; from∘f₁≈f₁′ = isoʳ X≅Y ; from∘f₂≈f₂′ = 𝒞.identityʳ } module ⊗ = Functor (⊗ 𝒞) L-resp-⊗ : {X Y X′ Y′ : 𝒞.Obj} {a : U [ X , X′ ]} {b : U [ Y , Y′ ]} → L₁ (a +₁ b) ≈ ⊗.₁ (L₁ a , L₁ b) L-resp-⊗ {X} {Y} {X′} {Y′} {a} {b} = record { ≅N = ≅.refl ; from∘f₁≈f₁′ = 𝒞.identityˡ ; from∘f₂≈f₂′ = 𝒞.identityˡ ○ sym +-η ○ sym ([]-cong₂ identityʳ identityʳ) } where open 𝒞.HomReasoning open 𝒞.Equiv open 𝒞 using (+-η; []-cong₂; identityˡ; identityʳ)