{-# OPTIONS --without-K --safe #-} open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory) module Functor.Instance.Cospan.Stack {o ℓ e} (𝒞 : FinitelyCocompleteCategory o ℓ e) where import Categories.Diagram.Pushout as DiagramPushout import Categories.Diagram.Pushout.Properties as PushoutProperties import Categories.Morphism as Morphism import Categories.Morphism.Reasoning as ⇒-Reasoning open import Categories.Category.Core using (Category) open import Categories.Functor.Bifunctor using (Bifunctor) open import Category.Instance.Cospans 𝒞 using (Cospan; Cospans; Same; id-Cospan; compose) open import Category.Instance.FinitelyCocompletes {o} {ℓ} {e} using () renaming (_×_ to _×′_) open import Category.Instance.Properties.FinitelyCocompletes {o} {ℓ} {e} using (-+-; FinitelyCocompletes-CC) open import Data.Product.Base using (Σ; _,_; _×_; proj₁; proj₂) open import Functor.Exact using (RightExactFunctor; IsPushout⇒Pushout) open import Level using (Level; _⊔_; suc) module 𝒞 = FinitelyCocompleteCategory 𝒞 module Cospans = Category Cospans open 𝒞 using (U; _+_; _+₁_; pushout; coproduct; [_,_]; ⊥; cocartesianCategory; monoidal) open Category U open DiagramPushout U using (Pushout) open PushoutProperties U using (up-to-iso) module 𝒞×𝒞 = FinitelyCocompleteCategory (𝒞 ×′ 𝒞) open 𝒞×𝒞 using () renaming (pushout to pushout′; U to U×U) open DiagramPushout U×U using () renaming (Pushout to Pushout′) open import Categories.Category.Monoidal.Utilities monoidal using (_⊗ᵢ_) together : {A A′ B B′ : Obj} → Cospan A B → Cospan A′ B′ → Cospan (A + A′) (B + B′) together A⇒B A⇒B′ = record { f₁ = f₁ A⇒B +₁ f₁ A⇒B′ ; f₂ = f₂ A⇒B +₁ f₂ A⇒B′ } where open Cospan id⊗id≈id : {A B : Obj} → Same (together (id-Cospan {A}) (id-Cospan {B})) (id-Cospan {A + B}) id⊗id≈id {A} {B} = record { ≅N = ≅.refl ; from∘f₁≈f₁′ = from∘f≈f′ ; from∘f₂≈f₂′ = from∘f≈f′ } where open Morphism U using (module ≅) open HomReasoning open 𝒞 using (+-η; []-cong₂) open coproduct {A} {B} using (i₁; i₂) from∘f≈f′ : id ∘ [ i₁ ∘ id , i₂ ∘ id ] 𝒞.≈ id from∘f≈f′ = begin id ∘ [ i₁ ∘ id , i₂ ∘ id ] ≈⟨ identityˡ ⟩ [ i₁ ∘ id , i₂ ∘ id ] ≈⟨ []-cong₂ identityʳ identityʳ ⟩ [ i₁ , i₂ ] ≈⟨ +-η ⟩ id ∎ homomorphism : {A A′ B B′ C C′ : Obj} → (A⇒B : Cospan A B) → (B⇒C : Cospan B C) → (A⇒B′ : Cospan A′ B′) → (B⇒C′ : Cospan B′ C′) → Same (together (compose A⇒B B⇒C) (compose A⇒B′ B⇒C′)) (compose (together A⇒B A⇒B′) (together B⇒C B⇒C′) ) homomorphism A⇒B B⇒C A⇒B′ B⇒C′ = record { ≅N = ≅N ; from∘f₁≈f₁′ = from∘f₁≈f₁′ ; from∘f₂≈f₂′ = from∘f₂≈f₂′ } where open Cospan open Pushout open HomReasoning open ⇒-Reasoning U open Morphism U using (_≅_) open _≅_ open 𝒞 using (+₁∘+₁) module -+- = RightExactFunctor (-+- {𝒞}) P₁ = pushout (f₂ A⇒B) (f₁ B⇒C) P₂ = pushout (f₂ A⇒B′) (f₁ B⇒C′) module P₁ = Pushout P₁ module P₂ = Pushout P₂ P₁×P₂ = pushout′ (f₂ A⇒B , f₂ A⇒B′) (f₁ B⇒C , f₁ B⇒C′) module P₁×P₂ = Pushout′ P₁×P₂ P₃ = pushout (f₂ A⇒B +₁ f₂ A⇒B′) (f₁ B⇒C +₁ f₁ B⇒C′) P₃′ = IsPushout⇒Pushout (-+-.F-resp-pushout P₁×P₂.isPushout) ≅N : Q P₃′ ≅ Q P₃ ≅N = up-to-iso P₃′ P₃ from∘f₁≈f₁′ : from ≅N ∘ (f₁ (compose A⇒B B⇒C) +₁ f₁ (compose A⇒B′ B⇒C′)) ≈ f₁ (compose (together A⇒B A⇒B′) (together B⇒C B⇒C′)) from∘f₁≈f₁′ = begin from ≅N ∘ (f₁ (compose A⇒B B⇒C) +₁ f₁ (compose A⇒B′ B⇒C′)) ≈⟨ Equiv.refl ⟩ from ≅N ∘ ((i₁ P₁ ∘ f₁ A⇒B) +₁ (i₁ P₂ ∘ f₁ A⇒B′)) ≈⟨ refl⟩∘⟨ +₁∘+₁ ⟨ from ≅N ∘ (i₁ P₁ +₁ i₁ P₂) ∘ (f₁ A⇒B +₁ f₁ A⇒B′) ≈⟨ Equiv.refl ⟩ from ≅N ∘ i₁ P₃′ ∘ f₁ (together A⇒B A⇒B′) ≈⟨ pullˡ (universal∘i₁≈h₁ P₃′) ⟩ i₁ P₃ ∘ f₁ (together A⇒B A⇒B′) ∎ from∘f₂≈f₂′ : from ≅N ∘ (f₂ (compose A⇒B B⇒C) +₁ f₂ (compose A⇒B′ B⇒C′)) ≈ f₂ (compose (together A⇒B A⇒B′) (together B⇒C B⇒C′)) from∘f₂≈f₂′ = begin from ≅N ∘ (f₂ (compose A⇒B B⇒C) +₁ f₂ (compose A⇒B′ B⇒C′)) ≈⟨ Equiv.refl ⟩ from ≅N ∘ ((i₂ P₁ ∘ f₂ B⇒C) +₁ (i₂ P₂ ∘ f₂ B⇒C′)) ≈⟨ refl⟩∘⟨ +₁∘+₁ ⟨ from ≅N ∘ (i₂ P₁ +₁ i₂ P₂) ∘ (f₂ B⇒C +₁ f₂ B⇒C′) ≈⟨ Equiv.refl ⟩ from ≅N ∘ i₂ P₃′ ∘ f₂ (together B⇒C B⇒C′) ≈⟨ pullˡ (universal∘i₂≈h₂ P₃′) ⟩ i₂ P₃ ∘ f₂ (together B⇒C B⇒C′) ∎ ⊗-resp-≈ : {A A′ B B′ : Obj} {f f′ : Cospan A B} {g g′ : Cospan A′ B′} → Same f f′ → Same g g′ → Same (together f g) (together f′ g′) ⊗-resp-≈ {_} {_} {_} {_} {f} {f′} {g} {g′} ≈f ≈g = record { ≅N = ≈f.≅N ⊗ᵢ ≈g.≅N ; from∘f₁≈f₁′ = from∘f₁≈f₁′ ; from∘f₂≈f₂′ = from∘f₂≈f₂′ } where open 𝒞 using (-+-) module ≈f = Same ≈f module ≈g = Same ≈g open HomReasoning open Cospan open 𝒞 using (+₁-cong₂; +₁∘+₁) from∘f₁≈f₁′ : (≈f.from +₁ ≈g.from) ∘ (f₁ f +₁ f₁ g) ≈ f₁ f′ +₁ f₁ g′ from∘f₁≈f₁′ = begin  (≈f.from +₁ ≈g.from) ∘ (f₁ f +₁ f₁ g) ≈⟨ +₁∘+₁ ⟩ (≈f.from ∘ f₁ f) +₁ (≈g.from ∘ f₁ g) ≈⟨ +₁-cong₂ (≈f.from∘f₁≈f₁′) (≈g.from∘f₁≈f₁′) ⟩ f₁ f′ +₁ f₁ g′ ∎ from∘f₂≈f₂′ : (≈f.from +₁ ≈g.from) ∘ (f₂ f +₁ f₂ g) ≈ f₂ f′ +₁ f₂ g′ from∘f₂≈f₂′ = begin  (≈f.from +₁ ≈g.from) ∘ (f₂ f +₁ f₂ g) ≈⟨ +₁∘+₁ ⟩ (≈f.from ∘ f₂ f) +₁ (≈g.from ∘ f₂ g) ≈⟨ +₁-cong₂ (≈f.from∘f₂≈f₂′) (≈g.from∘f₂≈f₂′) ⟩ f₂ f′ +₁ f₂ g′ ∎ ⊗ : Bifunctor Cospans Cospans Cospans ⊗ = record { F₀ = λ { (A , A′) → A + A′ } ; F₁ = λ { (f , g) → together f g } ; identity = λ { {x , y} → id⊗id≈id {x} {y} } ; homomorphism = λ { {_} {_} {_} {A⇒B , A⇒B′} {B⇒C , B⇒C′} → homomorphism A⇒B B⇒C A⇒B′ B⇒C′ } ; F-resp-≈ = λ { (≈f , ≈g) → ⊗-resp-≈ ≈f ≈g } }