{-# OPTIONS --without-K --safe #-} open import Level using (Level; _⊔_) module Functor.Instance.FreeMonoid {c ℓ : Level} where import Categories.Object.Monoid as MonoidObject open import Categories.Category.Construction.Monoids using (Monoids) open import Categories.Category.Instance.Setoids using (Setoids) open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory) open import Categories.Functor using (Functor) open import Categories.NaturalTransformation using (NaturalTransformation) open import Category.Instance.Setoids.SymmetricMonoidal {c} {c ⊔ ℓ} using (Setoids-×) open import Data.List.Properties using (++-assoc; ++-identityˡ; ++-identityʳ) open import Data.Product using (_,_) open import Function using (_⟶ₛ_) open import Functor.Instance.List {c} {ℓ} using (List) open import NaturalTransformation.Instance.EmptyList {c} {ℓ} using (⊤⇒[]) open import NaturalTransformation.Instance.ListAppend {c} {ℓ} using (++) open import Relation.Binary using (Setoid) open import Relation.Binary.PropositionalEquality as ≡ using (_≡_) module List = Functor List module Setoids-× = SymmetricMonoidalCategory Setoids-× module ++ = NaturalTransformation ++ module ⊤⇒[] = NaturalTransformation ⊤⇒[] open Functor open MonoidObject Setoids-×.monoidal using (Monoid; IsMonoid; Monoid⇒) open IsMonoid module _ (X : Setoid c ℓ) where private module X = Setoid X module ListX = Setoid (List.₀ X) ListMonoid : IsMonoid (List.₀ X) ListMonoid .μ = ++.η X ListMonoid .η = ⊤⇒[].η X ListMonoid .assoc {(x , y) , z} = ListX.reflexive (++-assoc x y z) ListMonoid .identityˡ {_ , x} = ListX.reflexive (++-identityˡ x) ListMonoid .identityʳ {x , _} = ListX.reflexive (≡.sym (++-identityʳ x)) FreeMonoid₀ : (X : Setoid c ℓ) → Monoid FreeMonoid₀ X = record { isMonoid = ListMonoid X } FreeMonoid₁ : {A B : Setoid c ℓ} (f : A ⟶ₛ B) → Monoid⇒ (FreeMonoid₀ A) (FreeMonoid₀ B) FreeMonoid₁ f = record { arr = List.₁ f ; preserves-μ = λ {x,y} → ++.sym-commute f {x,y} ; preserves-η = ⊤⇒[].commute f } FreeMonoid : Functor (Setoids c ℓ) (Monoids Setoids-×.monoidal) FreeMonoid .F₀ = FreeMonoid₀ FreeMonoid .F₁ = FreeMonoid₁ FreeMonoid .identity {X} = List.identity {X} FreeMonoid .homomorphism {X} {Y} {Z} {f} {g} = List.homomorphism {X} {Y} {Z} {f} {g} FreeMonoid .F-resp-≈ {A} {B} {f} {g} = List.F-resp-≈ {A} {B} {f} {g}