{-# OPTIONS --without-K --safe #-} open import Level using (Level; _⊔_) module Functor.Instance.List {c ℓ : Level} where import Data.List as List import Data.List.Properties as ListProps import Data.List.Relation.Binary.Pointwise as PW open import Categories.Category.Instance.Setoids using (Setoids) open import Categories.Functor using (Functor) open import Data.Setoid using (∣_∣) open import Function.Base using (_∘_; id) open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_) open import Relation.Binary using (Setoid) open Functor open Setoid open Func private variable A B C : Setoid c ℓ -- the List functor takes a carrier A to lists of A -- and the equivalence on A to pointwise equivalence on lists of A Listₛ : Setoid c ℓ → Setoid c (c ⊔ ℓ) Listₛ = PW.setoid -- List on morphisms is the familiar map operation -- which applies the same function to every element of a list mapₛ : A ⟶ₛ B → Listₛ A ⟶ₛ Listₛ B mapₛ f .to = List.map (to f) mapₛ f .cong = PW.map⁺ (to f) (to f) ∘ PW.map (cong f) map-id : (xs : ∣ Listₛ A ∣) → PW.Pointwise (_≈_ A) (List.map id xs) xs map-id {A} = PW.map (reflexive A) ∘ PW.≡⇒Pointwise-≡ ∘ ListProps.map-id List-homo : (f : A ⟶ₛ B) (g : B ⟶ₛ C) → (xs : ∣ Listₛ A ∣) → PW.Pointwise (_≈_ C) (List.map (to g ∘ to f) xs) (List.map (to g) (List.map (to f) xs)) List-homo {C = C} f g = PW.map (reflexive C) ∘ PW.≡⇒Pointwise-≡ ∘ ListProps.map-∘ List : Functor (Setoids c ℓ) (Setoids c (c ⊔ ℓ)) List .F₀ = Listₛ List .F₁ = mapₛ List .identity {A} {xs} = map-id {A} xs List .homomorphism {f = f} {g} {xs} = List-homo f g xs List .F-resp-≈ {A} {B} {f} {g} f≈g = PW.map⁺ (to f) (to g) (PW.refl f≈g)