{-# OPTIONS --without-K --safe #-} open import Level using (Level; _⊔_) module Functor.Instance.List {c ℓ : Level} where import Data.List.Properties as ListProps import Data.List.Relation.Binary.Pointwise as PW open import Categories.Category.Instance.Setoids using (Setoids) open import Categories.Functor using (Functor) open import Data.Setoid using (∣_∣; _⇒ₛ_) open import Function.Base using (_∘_; id) open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_) open import Relation.Binary using (Setoid) open Functor open Setoid using (reflexive) open Func open import Data.Opaque.List as List hiding (List) private variable A B C : Setoid c ℓ open import Function.Construct.Identity using () renaming (function to Id) open import Function.Construct.Setoid using (_∙_) opaque unfolding List.List map-id : (xs : ∣ Listₛ A ∣) → (open Setoid (Listₛ A)) → mapₛ (Id _) ⟨$⟩ xs ≈ xs map-id {A} = reflexive (Listₛ A) ∘ ListProps.map-id List-homo : (f : A ⟶ₛ B) (g : B ⟶ₛ C) → (xs : ∣ Listₛ A ∣) → (open Setoid (Listₛ C)) → mapₛ (g ∙ f) ⟨$⟩ xs ≈ mapₛ g ⟨$⟩ (mapₛ f ⟨$⟩ xs) List-homo {C = C} f g = reflexive (Listₛ C) ∘ ListProps.map-∘ List-resp-≈ : (f g : A ⟶ₛ B) → (let open Setoid (A ⇒ₛ B) in f ≈ g) → (let open Setoid (Listₛ A ⇒ₛ Listₛ B) in mapₛ f ≈ mapₛ g) List-resp-≈ f g f≈g = PW.map⁺ (to f) (to g) (PW.refl f≈g) -- the List functor takes a carrier A to lists of A -- and the equivalence on A to pointwise equivalence on lists of A -- List on morphisms is the familiar map operation -- which applies the same function to every element of a list List : Functor (Setoids c ℓ) (Setoids c (c ⊔ ℓ)) List .F₀ = List.Listₛ List .F₁ = List.mapₛ List .identity {_} {xs} = map-id xs List .homomorphism {f = f} {g} {xs} = List-homo f g xs List .F-resp-≈ {f = f} {g} f≈g = List-resp-≈ f g f≈g