{-# OPTIONS --without-K --safe #-} open import Level using (Level; _⊔_) module Functor.Instance.Multiset {c ℓ : Level} where import Data.List as List import Data.List.Properties as ListProps import Data.List.Relation.Binary.Pointwise as PW open import Data.List.Relation.Binary.Permutation.Setoid using (↭-setoid; ↭-reflexive-≋) open import Data.List.Relation.Binary.Permutation.Setoid.Properties using (map⁺) open import Categories.Category.Instance.Setoids using (Setoids) open import Categories.Functor using (Functor) open import Data.Setoid using (∣_∣) open import Function.Base using (_∘_; id) open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_) open import Relation.Binary using (Setoid) open Functor open Setoid using (reflexive) open Func private variable A B C : Setoid c ℓ -- the Multiset functor takes a carrier A to lists of A -- and the equivalence on A to permutation equivalence on lists of A Multisetₛ : Setoid c ℓ → Setoid c (c ⊔ ℓ) Multisetₛ x = ↭-setoid x -- Multiset on morphisms applies the same function to every element of a multiset mapₛ : A ⟶ₛ B → Multisetₛ A ⟶ₛ Multisetₛ B mapₛ f .to = List.map (to f) mapₛ {A} {B} f .cong = map⁺ A B (cong f) map-id : (xs : ∣ Multisetₛ A ∣) → (open Setoid (Multisetₛ A)) → List.map id xs ≈ xs map-id {A} = reflexive (Multisetₛ A) ∘ ListProps.map-id Multiset-homo : (f : A ⟶ₛ B) (g : B ⟶ₛ C) → (xs : ∣ Multisetₛ A ∣) → (open Setoid (Multisetₛ C)) → List.map (to g ∘ to f) xs ≈ List.map (to g) (List.map (to f) xs) Multiset-homo {C = C} f g = reflexive (Multisetₛ C) ∘ ListProps.map-∘ Multiset : Functor (Setoids c ℓ) (Setoids c (c ⊔ ℓ)) Multiset .F₀ = Multisetₛ Multiset .F₁ = mapₛ Multiset .identity {A} {xs} = map-id {A} xs Multiset .homomorphism {f = f} {g} {xs} = Multiset-homo f g xs Multiset .F-resp-≈ {A} {B} {f} {g} f≈g = ↭-reflexive-≋ B (PW.map⁺ (to f) (to g) (PW.refl f≈g))