{-# OPTIONS --without-K --safe #-} module Functor.Instance.Nat.System where open import Level using (suc; 0ℓ) open import Categories.Category.Instance.Nat using (Nat) open import Categories.Category.Instance.Setoids using (Setoids) open import Categories.Functor.Core using (Functor) open import Data.Circuit.Value using (Value) open import Data.Fin.Base using (Fin) open import Data.Nat.Base using (ℕ) open import Data.Product.Base using (_,_; _×_) open import Data.System {suc 0ℓ} using (System; ≤-System; Systemₛ) open import Data.System.Values Value using (module ≋) open import Function.Bundles using (Func; _⟶ₛ_) open import Function.Base using (id; _∘_) open import Function.Construct.Setoid using (_∙_) open import Functor.Instance.Nat.Pull using (Pull₁; Pull-resp-≈) open import Functor.Instance.Nat.Push using (Push₁; Push-identity; Push-homomorphism; Push-resp-≈) open import Relation.Binary.PropositionalEquality as ≡ using (_≗_) -- import Relation.Binary.Reasoning.Setoid as ≈-Reasoning import Function.Construct.Identity as Id open Func open ≤-System open Functor private variable A B C : ℕ map : (Fin A → Fin B) → System A → System B map f X = record { S = S ; fₛ = fₛ ∙ Pull₁ f ; fₒ = Push₁ f ∙ fₒ } where open System X ≤-cong : (f : Fin A → Fin B) {X Y : System A} → ≤-System Y X → ≤-System (map f Y) (map f X) ⇒S (≤-cong f x≤y) = ⇒S x≤y ≗-fₛ (≤-cong f x≤y) = ≗-fₛ x≤y ∘ to (Pull₁ f) ≗-fₒ (≤-cong f x≤y) = cong (Push₁ f) ∘ ≗-fₒ x≤y System₁ : (Fin A → Fin B) → Systemₛ A ⟶ₛ Systemₛ B to (System₁ f) = map f cong (System₁ f) (x≤y , y≤x) = ≤-cong f x≤y , ≤-cong f y≤x id-x≤x : {X : System A} → ≤-System (map id X) X ⇒S (id-x≤x) = Id.function _ ≗-fₛ (id-x≤x {_} {x}) i s = System.refl x ≗-fₒ (id-x≤x {A} {x}) s = Push-identity x≤id-x : {x : System A} → ≤-System x (map id x) ⇒S x≤id-x = Id.function _ ≗-fₛ (x≤id-x {A} {x}) i s = System.refl x ≗-fₒ (x≤id-x {A} {x}) s = ≋.sym Push-identity System-homomorphism : {f : Fin A → Fin B} {g : Fin B → Fin C}  {X : System A} → ≤-System (map (g ∘ f) X) (map g (map f X)) × ≤-System (map g (map f X)) (map (g ∘ f) X) System-homomorphism {f = f} {g} {X} = left , right where open System X left : ≤-System (map (g ∘ f) X) (map g (map f X)) left .⇒S = Id.function S left .≗-fₛ i s = refl left .≗-fₒ s = Push-homomorphism right : ≤-System (map g (map f X)) (map (g ∘ f) X) right .⇒S = Id.function S right .≗-fₛ i s = refl right .≗-fₒ s = ≋.sym Push-homomorphism System-resp-≈ : {f g : Fin A → Fin B} → f ≗ g → {X : System A} → (≤-System (map f X) (map g X)) × (≤-System (map g X) (map f X)) System-resp-≈ {A} {B} {f = f} {g} f≗g {X} = both f≗g , both (≡.sym ∘ f≗g) where open System X both : {f g : Fin A → Fin B} → f ≗ g → ≤-System (map f X) (map g X) both f≗g .⇒S = Id.function S both f≗g .≗-fₛ i s = cong fₛ (Pull-resp-≈ f≗g {i}) both {f} {g} f≗g .≗-fₒ s = Push-resp-≈ f≗g Sys : Functor Nat (Setoids (suc 0ℓ) (suc 0ℓ)) Sys .F₀ = Systemₛ Sys .F₁ = System₁ Sys .identity = id-x≤x , x≤id-x Sys .homomorphism {x = X} = System-homomorphism {X = X} Sys .F-resp-≈ = System-resp-≈