{-# OPTIONS --without-K --safe #-} {-# OPTIONS --hidden-argument-puns #-} module Functor.Instance.Nat.System where open import Level using (suc; 0ℓ) open import Categories.Category.Instance.Nat using (Nat) open import Categories.Category using (Category) open import Categories.Category.Instance.Cats using (Cats) open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_; niHelper) open import Categories.Functor using (Functor; _∘F_) renaming (id to idF) open import Data.Circuit.Value using (Monoid) open import Data.Fin using (Fin) open import Data.Nat using (ℕ) open import Data.Product.Base using (_,_; _×_) open import Data.Setoid using (∣_∣) open import Data.System {suc 0ℓ} using (System; _≤_; Systemₛ; Systems; ≤-refl; ≤-trans; _≈_) open import Data.System.Values Monoid using (module ≋; module Object; Values; ≋-isEquiv) open import Relation.Binary using (Setoid) open import Function using (Func; _⟶ₛ_; _⟨$⟩_; _∘_; id) open import Function.Construct.Identity using () renaming (function to Id) open import Function.Construct.Setoid using (_∙_) open import Functor.Instance.Nat.Pull using (Pull) open import Functor.Instance.Nat.Push using (Push) open import Relation.Binary.PropositionalEquality as ≡ using (_≗_) open import Category.Instance.Setoids.SymmetricMonoidal {0ℓ} {0ℓ} using (Setoids-×) open import Category.Construction.CMonoids Setoids-×.symmetric using (CMonoids) open import Object.Monoid.Commutative Setoids-×.symmetric using (CommutativeMonoid; CommutativeMonoid⇒) open CommutativeMonoid⇒ using (arr) open Object using (Valuesₘ) open Func open Functor open _≤_ private variable A B C : ℕ opaque unfolding Valuesₘ ≋-isEquiv map : (Fin A → Fin B) → System A → System B map {A} {B} f X = let open System X in record { S = S ; fₛ = fₛ ∙ arr (Pull.₁ f) ; fₒ = arr (Push.₁ f) ∙ fₒ } opaque unfolding map open System map-≤ : (f : Fin A → Fin B) {X Y : System A} → X ≤ Y → map f X ≤ map f Y ⇒S (map-≤ f x≤y) = ⇒S x≤y ≗-fₛ (map-≤ f x≤y) = ≗-fₛ x≤y ∘ to (arr (Pull.₁ f)) ≗-fₒ (map-≤ f x≤y) = cong (arr (Push.₁ f)) ∘ ≗-fₒ x≤y opaque unfolding map-≤ map-≤-refl : (f : Fin A → Fin B) → {X : System A} → map-≤ f (≤-refl {A} {X}) ≈ ≤-refl map-≤-refl f {X} = Setoid.refl (S (map f X)) opaque unfolding map-≤ map-≤-trans : (f : Fin A → Fin B) → {X Y Z : System A} → {h : X ≤ Y} → {g : Y ≤ Z} → map-≤ f (≤-trans h g) ≈ ≤-trans (map-≤ f h) (map-≤ f g) map-≤-trans f {Z = Z} = Setoid.refl (S (map f Z)) opaque unfolding map-≤ map-≈ : (f : Fin A → Fin B) → {X Y : System A} → {g h : X ≤ Y} → h ≈ g → map-≤ f h ≈ map-≤ f g map-≈ f h≈g = h≈g Sys₁ : (Fin A → Fin B) → Functor (Systems A) (Systems B) Sys₁ {A} {B} f = record { F₀ = map f ; F₁ = λ C≤D → map-≤ f C≤D ; identity = map-≤-refl f ; homomorphism = map-≤-trans f ; F-resp-≈ = map-≈ f } opaque unfolding map map-id-≤ : (X : System A) → map id X ≤ X map-id-≤ X .⇒S = Id (S X) map-id-≤ X .≗-fₛ i s = cong (fₛ X) Pull.identity map-id-≤ X .≗-fₒ s = Push.identity opaque unfolding map map-id-≥ : (X : System A) → X ≤ map id X map-id-≥ X .⇒S = Id (S X) map-id-≥ X .≗-fₛ i s = cong (fₛ X) (≋.sym Pull.identity) map-id-≥ X .≗-fₒ s = ≋.sym Push.identity opaque unfolding map-≤ map-id-≤ map-id-comm : {X Y : System A} (f : X ≤ Y) → ≤-trans (map-≤ id f) (map-id-≤ Y) ≈ ≤-trans (map-id-≤ X) f map-id-comm {Y} f = Setoid.refl (S Y) opaque unfolding map-id-≤ map-id-≥ map-id-isoˡ : (X : System A) → ≤-trans (map-id-≤ X) (map-id-≥ X) ≈ ≤-refl map-id-isoˡ X = Setoid.refl (S X) map-id-isoʳ : (X : System A) → ≤-trans (map-id-≥ X) (map-id-≤ X) ≈ ≤-refl map-id-isoʳ X = Setoid.refl (S X) Sys-identity : Sys₁ {A} id ≃ idF Sys-identity = niHelper record { η = map-id-≤ ; η⁻¹ = map-id-≥ ; commute = map-id-comm ; iso = λ X → record { isoˡ = map-id-isoˡ X ; isoʳ = map-id-isoʳ X } } opaque unfolding map map-∘-≤ : (f : Fin A → Fin B) (g : Fin B → Fin C) (X : System A) → map (g ∘ f) X ≤ map g (map f X) map-∘-≤ f g X .⇒S = Id (S X) map-∘-≤ f g X .≗-fₛ i s = cong (fₛ X) Pull.homomorphism map-∘-≤ f g X .≗-fₒ s = Push.homomorphism opaque unfolding map map-∘-≥ : (f : Fin A → Fin B) (g : Fin B → Fin C) (X : System A) → map g (map f X) ≤ map (g ∘ f) X map-∘-≥ f g X .⇒S = Id (S X) map-∘-≥ f g X .≗-fₛ i s = cong (fₛ X) (≋.sym Pull.homomorphism) map-∘-≥ f g X .≗-fₒ s = ≋.sym Push.homomorphism Sys-homo : (f : Fin A → Fin B) (g : Fin B → Fin C) → Sys₁ (g ∘ f) ≃ Sys₁ g ∘F Sys₁ f Sys-homo {A} f g = niHelper record { η = map-∘-≤ f g ; η⁻¹ = map-∘-≥ f g ; commute = map-∘-comm f g ; iso = λ X → record { isoˡ = isoˡ X ; isoʳ = isoʳ X } } where opaque unfolding map-∘-≤ map-≤ map-∘-comm : (f : Fin A → Fin B) (g : Fin B → Fin C) → {X Y : System A} (X≤Y : X ≤ Y) → ≤-trans (map-≤ (g ∘ f) X≤Y) (map-∘-≤ f g Y) ≈ ≤-trans (map-∘-≤ f g X) (map-≤ g (map-≤ f X≤Y)) map-∘-comm f g {Y} X≤Y = Setoid.refl (S Y) module _ (X : System A) where opaque unfolding map-∘-≤ map-∘-≥ isoˡ : ≤-trans (map-∘-≤ f g X) (map-∘-≥ f g X) ≈ ≤-refl isoˡ = Setoid.refl (S X) isoʳ : ≤-trans (map-∘-≥ f g X) (map-∘-≤ f g X) ≈ ≤-refl isoʳ = Setoid.refl (S X) module _ {f g : Fin A → Fin B} (f≗g : f ≗ g) (X : System A) where opaque unfolding map map-cong-≤ : map f X ≤ map g X map-cong-≤ .⇒S = Id (S X) map-cong-≤ .≗-fₛ i s = cong (fₛ X) (Pull.F-resp-≈ f≗g) map-cong-≤ .≗-fₒ s = Push.F-resp-≈ f≗g map-cong-≥ : map g X ≤ map f X map-cong-≥ .⇒S = Id (S X) map-cong-≥ .≗-fₛ i s = cong (fₛ X) (Pull.F-resp-≈ (≡.sym ∘ f≗g)) map-cong-≥ .≗-fₒ s = Push.F-resp-≈ (≡.sym ∘ f≗g) opaque unfolding map-≤ map-cong-≤ map-cong-comm : {f g : Fin A → Fin B} (f≗g : f ≗ g) {X Y : System A} (h : X ≤ Y) → ≤-trans (map-≤ f h) (map-cong-≤ f≗g Y) ≈ ≤-trans (map-cong-≤ f≗g X) (map-≤ g h) map-cong-comm f≗g {Y} h = Setoid.refl (S Y) opaque unfolding map-cong-≤ map-cong-isoˡ : {f g : Fin A → Fin B} (f≗g : f ≗ g) (X : System A) → ≤-trans (map-cong-≤ f≗g X) (map-cong-≥ f≗g X) ≈ ≤-refl map-cong-isoˡ f≗g X = Setoid.refl (S X) map-cong-isoʳ : {f g : Fin A → Fin B} (f≗g : f ≗ g) (X : System A) → ≤-trans (map-cong-≥ f≗g X) (map-cong-≤ f≗g X) ≈ ≤-refl map-cong-isoʳ f≗g X = Setoid.refl (S X) Sys-resp-≈ : {f g : Fin A → Fin B} → f ≗ g → Sys₁ f ≃ Sys₁ g Sys-resp-≈ f≗g = niHelper record { η = map-cong-≤ f≗g ; η⁻¹ = map-cong-≥ f≗g ; commute = map-cong-comm f≗g ; iso = λ X → record { isoˡ = map-cong-isoˡ f≗g X ; isoʳ = map-cong-isoʳ f≗g X } } Sys : Functor Nat (Cats (suc 0ℓ) (suc 0ℓ) 0ℓ) Sys .F₀ = Systems Sys .F₁ = Sys₁ Sys .identity = Sys-identity Sys .homomorphism = Sys-homo _ _ Sys .F-resp-≈ = Sys-resp-≈ module Sys = Functor Sys