{-# OPTIONS --without-K --safe #-} open import Level using (Level; _⊔_; 0ℓ; suc) module Functor.Monoidal.Instance.Nat.Circ where import Categories.Object.Monoid as MonoidObject import Data.Permutation.Sort as ↭-Sort import Function.Reasoning as →-Reasoning open import Category.Instance.Setoids.SymmetricMonoidal {suc 0ℓ} {suc 0ℓ} using (Setoids-×) import Categories.Category.Monoidal.Reasoning as ⊗-Reasoning open import Category.Monoidal.Instance.Nat using (Nat,+,0) open import Categories.Category.Construction.Monoids using (Monoids) open import Categories.Category.Instance.Nat using (Nat; Nat-Cocartesian) open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory) open import Categories.Category.Instance.SingletonSet using (SingletonSetoid) open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian) open import Categories.Category.Cartesian using (Cartesian) open Cartesian (Setoids-Cartesian {suc 0ℓ} {suc 0ℓ}) using (products) open import Categories.Category.BinaryProducts using (module BinaryProducts) open import Categories.Functor using (_∘F_) open BinaryProducts products using (-×-) open import Categories.Category.Product using (_⁂_) open import Categories.Category.Cocartesian using (Cocartesian) open import Categories.Category.Instance.Nat using (Nat-Cocartesian) open import Categories.Functor.Monoidal.Symmetric using (module Lax) open import Categories.Functor using (Functor) open import Categories.Category.Cocartesian.Bundle using (CocartesianCategory) open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) open import Data.Circuit using (Circuit; Circuitₛ; mkCircuit; mkCircuitₛ; _≈_; mk≈; map) open import Data.Circuit.Gate using (Gates) open import Data.Nat using (ℕ; _+_) open import Data.Product using (_,_) open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_) open import Function using (_⟶ₛ_; Func; _⟨$⟩_; _∘_; id) open import Functor.Instance.Nat.Circ {suc 0ℓ} using (Circ; module Multiset∘Edge) open import Functor.Instance.Nat.Edge {suc 0ℓ} using (Edge) open import Function.Construct.Setoid using (_∙_) module Setoids-× = SymmetricMonoidalCategory Setoids-× open import Functor.Instance.FreeCMonoid {suc 0ℓ} {suc 0ℓ} using (FreeCMonoid) Nat-Cocartesian-Category : CocartesianCategory 0ℓ 0ℓ 0ℓ Nat-Cocartesian-Category = record { cocartesian = Nat-Cocartesian } open import Functor.Monoidal.Construction.MultisetOf {𝒞 = Nat-Cocartesian-Category} (Edge Gates) FreeCMonoid using (BagOf,++,[]) open Lax using (SymmetricMonoidalFunctor) module BagOf,++,[] = SymmetricMonoidalFunctor BagOf,++,[] open SymmetricMonoidalFunctor ε⇒ : SingletonSetoid ⟶ₛ Circuitₛ 0 ε⇒ = mkCircuitₛ ∙ BagOf,++,[].ε open Cocartesian Nat-Cocartesian using (-+-) open Func η : {n m : ℕ} → Circuitₛ n ×ₛ Circuitₛ m ⟶ₛ Circuitₛ (n + m) η {n} {m} .to (mkCircuit X , mkCircuit Y) = mkCircuit (BagOf,++,[].⊗-homo.η (n , m) ⟨$⟩ (X , Y)) η {n} {m} .cong (mk≈ x , mk≈ y) = mk≈ (cong (BagOf,++,[].⊗-homo.η (n , m)) (x , y)) ⊗-homomorphism : NaturalTransformation (-×- ∘F (Circ ⁂ Circ)) (Circ ∘F -+-) ⊗-homomorphism = ntHelper record { η = λ (n , m) → η {n} {m} ; commute = λ { (f , g) {mkCircuit X , mkCircuit Y} → mk≈ (BagOf,++,[].⊗-homo.commute (f , g) {X , Y}) } } Circ,⊗,ε : SymmetricMonoidalFunctor Nat,+,0 Setoids-× Circ,⊗,ε .F = Circ Circ,⊗,ε .isBraidedMonoidal = record { isMonoidal = record { ε = ε⇒ ; ⊗-homo = ⊗-homomorphism ; associativity = λ { {n} {m} {o} {(mkCircuit x , mkCircuit y) , mkCircuit z} → mk≈ (BagOf,++,[].associativity {n} {m} {o} {(x , y) , z}) } ; unitaryˡ = λ { {n} {_ , mkCircuit x} → mk≈ (BagOf,++,[].unitaryˡ {n} {_ , x}) } ; unitaryʳ = λ { {n} {mkCircuit x , _} → mk≈ (BagOf,++,[].unitaryʳ {n} {x , _}) } } ; braiding-compat = λ { {n} {m} {mkCircuit x , mkCircuit y} → mk≈ (BagOf,++,[].braiding-compat {n} {m} {x , y}) } }