{-# OPTIONS --without-K --safe #-} module Functor.Monoidal.Instance.Nat.Pull where open import Category.Monoidal.Instance.Nat using (Natop,+,0; Natop-Cartesian) open import Categories.Category.Instance.Nat using (Nat-Cocartesian) open import Categories.Category.Instance.SingletonSet using (SingletonSetoid) open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; niHelper) open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian) open import Categories.Category.BinaryProducts using (module BinaryProducts) open import Categories.Category.Cartesian using (Cartesian) open import Categories.Category.Cocartesian using (Cocartesian; BinaryCoproducts) open import Categories.Category.Product using (_⁂_) open import Categories.Functor using (_∘F_) open import Data.Subset.Functional using (Subset) open import Data.Nat.Base using (ℕ; _+_) open import Relation.Binary using (Setoid) open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_) open import Data.Product.Base using (_,_; _×_; Σ) open import Data.Vec.Functional using ([]; _++_) open import Data.Vec.Functional.Properties using (++-cong) open import Data.Vec.Functional using (Vector; []) open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_) open import Functor.Instance.Nat.Pull using (Pull; Pull₁) open import Level using (0ℓ; Level) open import Data.Fin.Permutation using (Permutation; _⟨$⟩ʳ_; _⟨$⟩ˡ_) open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using (products) open BinaryProducts products using (-×-) open Cocartesian Nat-Cocartesian using (module Dual; _+₁_; +-assocʳ; +-comm; +-swap; +₁∘+-swap; i₁; i₂) open Dual.op-binaryProducts using () renaming (-×- to -+-; assocˡ∘⟨⟩ to []∘assocʳ; swap∘⟨⟩ to []∘swap) open import Data.Fin.Base using (Fin; splitAt; join; _↑ˡ_; _↑ʳ_) open import Data.Fin.Properties using (splitAt-join; splitAt-↑ˡ; splitAt-↑ʳ; join-splitAt) open import Data.Sum.Base using ([_,_]′; map; map₁; map₂; inj₁; inj₂) open import Data.Sum.Properties using ([,]-map; [,]-cong; [-,]-cong; [,-]-cong; [,]-∘) open import Data.Fin.Preimage using (preimage) open import Function.Base using (_∘_; id) open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_; module ≡-Reasoning) open import Data.Bool.Base using (Bool) open import Data.Setoid using (∣_∣) open import Data.Circuit.Value using (Value) open import Data.System.Values Value using (Values) open import Category.Instance.Setoids.SymmetricMonoidal {0ℓ} {0ℓ} using (Setoids-×) open import Categories.Functor.Monoidal.Symmetric Natop,+,0 Setoids-× using (module Strong) open Strong using (SymmetricMonoidalFunctor) open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory) module Setoids-× = SymmetricMonoidalCategory Setoids-× import Function.Construct.Constant as Const open Func module _ where open import Categories.Morphism (Setoids-×.U) using (_≅_; module Iso) open import Data.Unit.Polymorphic using (tt) open _≅_ open Iso Pull-ε : SingletonSetoid ≅ Values 0 from Pull-ε = Const.function SingletonSetoid (Values 0) [] to Pull-ε = Const.function (Values 0) SingletonSetoid tt isoˡ (iso Pull-ε) = tt isoʳ (iso Pull-ε) () ++ₛ : {n m : ℕ} → Values n ×ₛ Values m ⟶ₛ Values (n + m) to ++ₛ (xs , ys) = xs ++ ys cong ++ₛ (≗xs , ≗ys) = ++-cong _ _ ≗xs ≗ys splitₛ : {n m : ℕ} → Values (n + m) ⟶ₛ Values n ×ₛ Values m to (splitₛ {n} {m}) v = v ∘ (_↑ˡ m) , v ∘ (n ↑ʳ_) cong (splitₛ {n} {m}) v₁≋v₂ = v₁≋v₂ ∘ (_↑ˡ m) , v₁≋v₂ ∘ (n ↑ʳ_) Pull-++ : {n n′ m m′ : ℕ} (f : Fin n → Fin n′) (g : Fin m → Fin m′) {xs : ∣ Values n′ ∣} {ys : ∣ Values m′ ∣} → (Pull₁ f ⟨$⟩ xs) ++ (Pull₁ g ⟨$⟩ ys) ≗ Pull₁ (f +₁ g) ⟨$⟩ (xs ++ ys) Pull-++ {n} {n′} {m} {m′} f g {xs} {ys} e = begin (xs ∘ f ++ ys ∘ g) e ≡⟨ [,]-map (splitAt n e) ⟨ [ xs , ys ]′ (map f g (splitAt n e)) ≡⟨ ≡.cong [ xs , ys ]′ (splitAt-join n′ m′ (map f g (splitAt n e))) ⟨ [ xs , ys ]′ (splitAt n′ (join n′ m′ (map f g (splitAt n e)))) ≡⟨ ≡.cong ([ xs , ys ]′ ∘ splitAt n′) ([,]-map (splitAt n e)) ⟩ [ xs , ys ]′ (splitAt n′ ((f +₁ g) e)) ∎ where open ≡-Reasoning ⊗-homomorphism : NaturalIsomorphism (-×- ∘F (Pull ⁂ Pull)) (Pull ∘F -+-) ⊗-homomorphism = niHelper record { η = λ (n , m) → ++ₛ {n} {m} ; η⁻¹ = λ (n , m) → splitₛ {n} {m} ; commute = λ (f , g) → Pull-++ f g ; iso = λ (n , m) → record { isoˡ = λ { {x , y} → (λ i → ≡.cong [ x , y ] (splitAt-↑ˡ n i m)) , (λ i → ≡.cong [ x , y ] (splitAt-↑ʳ n m i)) } ; isoʳ = λ { {x} i → ≡.trans (≡.sym ([,]-∘ x (splitAt n i))) (≡.cong x (join-splitAt n m i)) } } } where open import Data.Sum.Base using ([_,_]) open import Data.Product.Base using (proj₁; proj₂) ++-↑ˡ : {n m : ℕ} (X : ∣ Values n ∣) (Y : ∣ Values m ∣) → (X ++ Y) ∘ i₁ ≗ X ++-↑ˡ {n} {m} X Y i = ≡.cong [ X , Y ]′ (splitAt-↑ˡ n i m) ++-↑ʳ : {n m : ℕ} (X : ∣ Values n ∣) (Y : ∣ Values m ∣) → (X ++ Y) ∘ i₂ ≗ Y ++-↑ʳ {n} {m} X Y i = ≡.cong [ X , Y ]′ (splitAt-↑ʳ n m i) -- TODO move to Data.Vector ++-assoc : {m n o : ℕ} (X : ∣ Values m ∣) (Y : ∣ Values n ∣) (Z : ∣ Values o ∣) → ((X ++ Y) ++ Z) ∘ +-assocʳ {m} ≗ X ++ (Y ++ Z) ++-assoc {m} {n} {o} X Y Z i = begin ((X ++ Y) ++ Z) (+-assocʳ {m} i) ≡⟨⟩ ((X ++ Y) ++ Z) ([ i₁ ∘ i₁ , _ ]′ (splitAt m i)) ≡⟨ [,]-∘ ((X ++ Y) ++ Z) (splitAt m i) ⟩ [ ((X ++ Y) ++ Z) ∘ i₁ ∘ i₁ , _ ]′ (splitAt m i) ≡⟨ [-,]-cong (++-↑ˡ (X ++ Y) Z ∘ i₁) (splitAt m i) ⟩ [ (X ++ Y) ∘ i₁ , _ ]′ (splitAt m i) ≡⟨ [-,]-cong (++-↑ˡ X Y) (splitAt m i) ⟩ [ X , ((X ++ Y) ++ Z) ∘ [ _ , _ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([,]-∘ ((X ++ Y) ++ Z) ∘ splitAt n) (splitAt m i) ⟩ [ X , [ (_ ++ Z) ∘ i₁ ∘ i₂ {m} , _ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([-,]-cong (++-↑ˡ (X ++ Y) Z ∘ i₂) ∘ splitAt n) (splitAt m i) ⟩ [ X , [ (X ++ Y) ∘ i₂ , _ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([-,]-cong (++-↑ʳ X Y) ∘ splitAt n) (splitAt m i) ⟩ [ X , [ Y , ((X ++ Y) ++ Z) ∘ i₂ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([,-]-cong (++-↑ʳ (X ++ Y) Z) ∘ splitAt n) (splitAt m i) ⟩ [ X , [ Y , Z ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨⟩ (X ++ (Y ++ Z)) i ∎ where open Bool open Fin open ≡-Reasoning -- TODO also Data.Vector Pull-unitaryˡ : {n : ℕ} (X : ∣ Values n ∣) → (X ++ []) ∘ i₁ ≗ X Pull-unitaryˡ {n} X i = begin [ X , [] ]′ (splitAt _ (i ↑ˡ 0)) ≡⟨ ≡.cong ([ X , [] ]′) (splitAt-↑ˡ n i 0) ⟩ [ X , [] ]′ (inj₁ i) ≡⟨⟩ X i ∎ where open ≡-Reasoning open import Function.Bundles using (Inverse) open import Categories.Category.Instance.Nat using (Nat) open import Categories.Morphism Nat using (_≅_) Pull-swap : {n m : ℕ} (X : ∣ Values n ∣) (Y : ∣ Values m ∣) → (X ++ Y) ∘ (+-swap {n}) ≗ Y ++ X Pull-swap {n} {m} X Y i = begin ((X ++ Y) ∘ +-swap {n}) i ≡⟨ [,]-∘ (X ++ Y) (splitAt m i) ⟩ [ (X ++ Y) ∘ i₂ , (X ++ Y) ∘ i₁ ]′ (splitAt m i) ≡⟨ [-,]-cong (++-↑ʳ X Y) (splitAt m i) ⟩ [ Y , (X ++ Y) ∘ i₁ ]′ (splitAt m i) ≡⟨ [,-]-cong (++-↑ˡ X Y) (splitAt m i) ⟩ [ Y , X ]′ (splitAt m i) ≡⟨⟩ (Y ++ X) i ∎ where open ≡-Reasoning open Inverse module +-swap = _≅_ (+-comm {m} {n}) n+m↔m+n : Permutation (n + m) (m + n) n+m↔m+n .to = +-swap.to n+m↔m+n .from = +-swap.from n+m↔m+n .to-cong ≡.refl = ≡.refl n+m↔m+n .from-cong ≡.refl = ≡.refl n+m↔m+n .inverse = (λ { ≡.refl → +-swap.isoˡ _ }) , (λ { ≡.refl → +-swap.isoʳ _ }) open SymmetricMonoidalFunctor Pull,++,[] : SymmetricMonoidalFunctor Pull,++,[] .F = Pull Pull,++,[] .isBraidedMonoidal = record { isStrongMonoidal = record { ε = Pull-ε ; ⊗-homo = ⊗-homomorphism ; associativity = λ { {m} {n} {o} {(X , Y) , Z} i → ++-assoc X Y Z i } ; unitaryˡ = λ _ → ≡.refl ; unitaryʳ = λ { {n} {X , _} i → Pull-unitaryˡ X i } } ; braiding-compat = λ { {n} {m} {X , Y} i → Pull-swap X Y i } }