{-# OPTIONS --without-K --safe #-} module Functor.Monoidal.Instance.Nat.Push where open import Categories.Category.Instance.Nat using (Nat) open import Data.Bool.Base using (Bool; false) open import Data.Subset.Functional using (Subset; ⁅_⁆; ⊥) open import Function.Base using (_∘_; case_of_; _$_; id) open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_) open import Level using (0ℓ; Level) open import Relation.Binary using (Rel; Setoid) open import Functor.Instance.Nat.Push using (Push; Push-defs) open import Categories.Category.Instance.SingletonSet using () renaming (SingletonSetoid to ⊤ₛ) open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) open import Data.Vec.Functional as Vec using (Vector) open import Data.Vector using (++-assoc; ++-↑ˡ; ++-↑ʳ) -- open import Data.Vec.Functional.Properties using (++-cong) open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian) open import Function.Construct.Constant using () renaming (function to Const) open import Categories.Category.BinaryProducts using (module BinaryProducts) open import Categories.Category.Cartesian using (Cartesian) open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using (products) open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory) open import Categories.Category.Instance.Nat using (Nat-Cocartesian) open import Categories.Category.Cocartesian using (Cocartesian) open import Categories.Category.Product using (_⁂_) open import Categories.Functor using () renaming (_∘F_ to _∘′_) open Cocartesian Nat-Cocartesian using (module Dual; i₁; i₂; -+-; _+₁_; +-assoc; +-assocʳ; +-assocˡ; +-comm; +-swap; +₁∘+-swap) open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_) open import Data.Nat using (ℕ; _+_) open import Data.Fin using (Fin) open import Data.Product.Base using (_,_; _×_; Σ) open import Data.Fin.Preimage using (preimage; preimage-⊥; preimage-cong₂) open import Functor.Monoidal.Instance.Nat.Preimage using (preimage-++) open import Data.Sum.Base using ([_,_]; [_,_]′; inj₁; inj₂) open import Data.Sum.Properties using ([,]-cong; [,-]-cong; [-,]-cong; [,]-∘; [,]-map) open import Data.Circuit.Merge using (merge-with; merge; merge-⊥; merge-[]; ⁅⁆-++; merge-++; merge-cong₁; merge-cong₂; merge-suc; _when_; join-merge; merge-preimage-ρ; merge-⁅⁆) open import Data.Circuit.Value using (Value; join; join-comm; join-assoc; Monoid) open import Data.Fin.Base using (splitAt; _↑ˡ_; _↑ʳ_) renaming (join to joinAt) open import Data.Fin.Properties using (splitAt-↑ˡ; splitAt-↑ʳ; splitAt⁻¹-↑ˡ; splitAt⁻¹-↑ʳ; ↑ˡ-injective; ↑ʳ-injective; _≟_) open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≢_; _≗_; module ≡-Reasoning) open BinaryProducts products using (-×-) open Value using (U) open Bool using (false) open import Function.Bundles using (Equivalence) open import Category.Monoidal.Instance.Nat using (Nat,+,0) open import Category.Instance.Setoids.SymmetricMonoidal {0ℓ} {0ℓ} using (Setoids-×) open import Categories.Functor.Monoidal.Symmetric Nat,+,0 Setoids-× using (module Lax) open Lax using (SymmetricMonoidalFunctor) open import Categories.Morphism Nat using (_≅_) open import Function.Bundles using (Inverse) open import Data.Fin.Permutation using (Permutation; _⟨$⟩ʳ_; _⟨$⟩ˡ_) open Dual.op-binaryProducts using () renaming (assocˡ∘⟨⟩ to []∘assocʳ; swap∘⟨⟩ to []∘swap) open import Relation.Nullary.Decidable using (does; does-⇔; dec-false) open import Data.Setoid using (∣_∣) open ℕ open import Data.System.Values Monoid using (Values; <ε>; ++ₛ; _++_; head; tail; _≋_) open Func open ≡-Reasoning private Push-ε : ⊤ₛ {0ℓ} {0ℓ} ⟶ₛ Values 0 Push-ε = Const ⊤ₛ (Values 0) <ε> opaque unfolding _++_ unfolding Push-defs Push-++ : {n n′ m m′ : ℕ } → (f : Fin n → Fin n′) → (g : Fin m → Fin m′) → (xs : ∣ Values n ∣) → (ys : ∣ Values m ∣) → (Push.₁ f ⟨$⟩ xs) ++ (Push.₁ g ⟨$⟩ ys) ≋ Push.₁ (f +₁ g) ⟨$⟩ (xs ++ ys) Push-++ {n} {n′} {m} {m′} f g xs ys i = begin ((merge xs ∘ preimage f ∘ ⁅_⁆) ++ (merge ys ∘ preimage g ∘ ⁅_⁆)) i ≡⟨ [,]-cong left right (splitAt n′ i) ⟩ [ (λ x → merge (xs ++ ys) _) , (λ x → merge (xs ++ ys) _) ]′ (splitAt n′ i) ≡⟨ [,]-∘ (merge (xs ++ ys) ∘ (preimage (f +₁ g))) (splitAt n′ i) ⟨ merge (xs ++ ys) (preimage (f +₁ g) ((⁅⁆++⊥ Vec.++ ⊥++⁅⁆) i)) ≡⟨ merge-cong₂ (xs ++ ys) (preimage-cong₂ (f +₁ g) (⁅⁆-++ {n′} i)) ⟩ merge (xs ++ ys) (preimage (f +₁ g) ⁅ i ⁆) ∎ where ⁅⁆++⊥ : Vector (Subset (n′ + m′)) n′ ⁅⁆++⊥ x = ⁅ x ⁆ Vec.++ ⊥ ⊥++⁅⁆ : Vector (Subset (n′ + m′)) m′ ⊥++⁅⁆ x = ⊥ Vec.++ ⁅ x ⁆ left : (x : Fin n′) → merge xs (preimage f ⁅ x ⁆) ≡ merge (xs ++ ys) (preimage (f +₁ g) (⁅ x ⁆ Vec.++ ⊥)) left x = begin merge xs (preimage f ⁅ x ⁆) ≡⟨ join-comm U (merge xs (preimage f ⁅ x ⁆)) ⟩ join (merge xs (preimage f ⁅ x ⁆)) U ≡⟨ ≡.cong (join (merge _ _)) (merge-⊥ ys) ⟨ join (merge xs (preimage f ⁅ x ⁆)) (merge ys ⊥) ≡⟨ ≡.cong (join (merge _ _)) (merge-cong₂ ys (preimage-⊥ g)) ⟨ join (merge xs (preimage f ⁅ x ⁆)) (merge ys (preimage g ⊥)) ≡⟨ merge-++ xs ys (preimage f ⁅ x ⁆) (preimage g ⊥) ⟨ merge (xs ++ ys) ((preimage f ⁅ x ⁆) Vec.++ (preimage g ⊥)) ≡⟨ merge-cong₂ (xs ++ ys) (preimage-++ f g) ⟩ merge (xs ++ ys) (preimage (f +₁ g) (⁅ x ⁆ Vec.++ ⊥)) ∎ right : (x : Fin m′) → merge ys (preimage g ⁅ x ⁆) ≡ merge (xs ++ ys) (preimage (f +₁ g) (⊥ Vec.++ ⁅ x ⁆)) right x = begin merge ys (preimage g ⁅ x ⁆) ≡⟨⟩ join U (merge ys (preimage g ⁅ x ⁆)) ≡⟨ ≡.cong (λ h → join h (merge _ _)) (merge-⊥ xs) ⟨ join (merge xs ⊥) (merge ys (preimage g ⁅ x ⁆)) ≡⟨ ≡.cong (λ h → join h (merge _ _)) (merge-cong₂ xs (preimage-⊥ f)) ⟨ join (merge xs (preimage f ⊥)) (merge ys (preimage g ⁅ x ⁆)) ≡⟨ merge-++ xs ys (preimage f ⊥) (preimage g ⁅ x ⁆) ⟨ merge (xs ++ ys) ((preimage f ⊥) Vec.++ (preimage g ⁅ x ⁆)) ≡⟨ merge-cong₂ (xs ++ ys) (preimage-++ f g) ⟩ merge (xs ++ ys) (preimage (f +₁ g) (⊥ Vec.++ ⁅ x ⁆)) ∎ ⊗-homomorphism : NaturalTransformation (-×- ∘′ (Push ⁂ Push)) (Push ∘′ -+-) ⊗-homomorphism = ntHelper record { η = λ (n , m) → ++ₛ {n} {m} ; commute = λ { (f , g) {xs , ys} → Push-++ f g xs ys } } opaque unfolding Push-defs unfolding _++_ Push-assoc : {m n o : ℕ} (X : ∣ Values m ∣) (Y : ∣ Values n ∣) (Z : ∣ Values o ∣) → (Push.₁ (+-assocˡ {m} {n} {o}) ⟨$⟩ ((X ++ Y) ++ Z)) ≋ X ++ Y ++ Z Push-assoc {m} {n} {o} X Y Z i = begin merge ((X ++ Y) ++ Z) (preimage (+-assocˡ {m}) ⁅ i ⁆) ≡⟨ merge-preimage-ρ ↔-mno ((X ++ Y) ++ Z) ⁅ i ⁆ ⟩ merge (((X ++ Y) ++ Z) ∘ (+-assocʳ {m})) (⁅ i ⁆) ≡⟨⟩ merge (((X ++ Y) ++ Z) ∘ (+-assocʳ {m})) (preimage id ⁅ i ⁆) ≡⟨ merge-cong₁ (++-assoc X Y Z) (preimage id ⁅ i ⁆) ⟩ merge (X ++ (Y ++ Z)) (preimage id ⁅ i ⁆) ≡⟨ Push.identity i ⟩ (X ++ (Y ++ Z)) i ∎ where open Inverse module +-assoc = _≅_ (+-assoc {m} {n} {o}) ↔-mno : Permutation ((m + n) + o) (m + (n + o)) ↔-mno .to = +-assocˡ {m} ↔-mno .from = +-assocʳ {m} ↔-mno .to-cong ≡.refl = ≡.refl ↔-mno .from-cong ≡.refl = ≡.refl ↔-mno .inverse = (λ { ≡.refl → +-assoc.isoˡ _ }) , λ { ≡.refl → +-assoc.isoʳ _ } Push-unitaryˡ : {n : ℕ} (X : ∣ Values n ∣) → Push.₁ id ⟨$⟩ (<ε> ++ X) ≋ X Push-unitaryˡ = merge-⁅⁆ preimage-++′ : {n m o : ℕ} (f : Vector (Fin o) n) (g : Vector (Fin o) m) (S : Subset o) → preimage (f Vec.++ g) S ≗ preimage f S Vec.++ preimage g S preimage-++′ {n} f g S = [,]-∘ S ∘ splitAt n Push-unitaryʳ : {n : ℕ} (X : ∣ Values n ∣) → Push.₁ (id Vec.++ (λ())) ⟨$⟩ (X ++ (<ε> {0})) ≋ X Push-unitaryʳ {n} X i = begin merge (X ++ <ε>) (preimage (id Vec.++ (λ ())) ⁅ i ⁆) ≡⟨ merge-cong₂ (X Vec.++ <ε>) (preimage-++′ id (λ ()) ⁅ i ⁆) ⟩ merge (X ++ <ε>) (⁅ i ⁆ Vec.++ preimage (λ ()) ⁅ i ⁆) ≡⟨ merge-++ X <ε> ⁅ i ⁆ (preimage (λ ()) ⁅ i ⁆) ⟩ join (merge X ⁅ i ⁆) (merge <ε> (preimage (λ ()) ⁅ i ⁆)) ≡⟨ ≡.cong (join (merge X ⁅ i ⁆)) (merge-[] <ε> (preimage (λ ()) ⁅ i ⁆)) ⟩ join (merge X ⁅ i ⁆) U ≡⟨ join-comm (merge X ⁅ i ⁆) U ⟩ merge X ⁅ i ⁆ ≡⟨ merge-⁅⁆ X i ⟩ X i ∎ Push-swap : {n m : ℕ} (X : ∣ Values n ∣) (Y : ∣ Values m ∣) → Push.₁ (+-swap {m}) ⟨$⟩ (X ++ Y) ≋ (Y ++ X) Push-swap {n} {m} X Y i = begin merge (X ++ Y) (preimage (+-swap {m}) ⁅ i ⁆) ≡⟨ merge-preimage-ρ n+m↔m+n (X ++ Y) ⁅ i ⁆ ⟩ merge ((X ++ Y) ∘ +-swap {n}) ⁅ i ⁆ ≡⟨ merge-⁅⁆ ((X ++ Y) ∘ (+-swap {n})) i ⟩ ((X ++ Y) ∘ +-swap {n}) i ≡⟨ [,]-∘ (X ++ Y) (splitAt m i) ⟩ [ (X ++ Y) ∘ i₂ , (X ++ Y) ∘ i₁ ]′ (splitAt m i) ≡⟨ [-,]-cong (++-↑ʳ X Y) (splitAt m i) ⟩ [ Y , (X ++ Y) ∘ i₁ ]′ (splitAt m i) ≡⟨ [,-]-cong (++-↑ˡ X Y) (splitAt m i) ⟩ [ Y , X ]′ (splitAt m i) ≡⟨⟩ (Y ++ X) i ∎ where open ≡-Reasoning open Inverse module +-swap = _≅_ (+-comm {m} {n}) n+m↔m+n : Permutation (n + m) (m + n) n+m↔m+n .to = +-swap.to n+m↔m+n .from = +-swap.from n+m↔m+n .to-cong ≡.refl = ≡.refl n+m↔m+n .from-cong ≡.refl = ≡.refl n+m↔m+n .inverse = (λ { ≡.refl → +-swap.isoˡ _ }) , (λ { ≡.refl → +-swap.isoʳ _ }) open SymmetricMonoidalFunctor Push,++,[] : SymmetricMonoidalFunctor Push,++,[] .F = Push Push,++,[] .isBraidedMonoidal = record { isMonoidal = record { ε = Push-ε ; ⊗-homo = ⊗-homomorphism ; associativity = λ { {n} {m} {o} {(X , Y) , Z} → Push-assoc X Y Z } ; unitaryˡ = λ { {n} {_ , X} → Push-unitaryˡ X } ; unitaryʳ = λ { {n} {X , _} → Push-unitaryʳ X } } ; braiding-compat = λ { {n} {m} {X , Y} → Push-swap X Y } } module Push,++,[] = SymmetricMonoidalFunctor Push,++,[]