{-# OPTIONS --without-K --safe #-} open import Level using (Level; 0ℓ; suc) module Functor.Monoidal.Instance.Nat.System {ℓ : Level} where open import Function.Construct.Identity using () renaming (function to Id) import Function.Construct.Constant as Const open import Category.Monoidal.Instance.Nat using (Nat,+,0; Natop,+,0) open import Categories.Category.Instance.Nat using (Natop) open import Category.Instance.Setoids.SymmetricMonoidal {suc ℓ} {ℓ} using (Setoids-×) open import Categories.Category.Instance.SingletonSet using (SingletonSetoid) open import Data.Circuit.Value using (Value) open import Data.Setoid using (_⇒ₛ_; ∣_∣) open import Data.System {ℓ} using (Systemₛ; System; ≤-System) open import Data.System.Values Value using (Values; _≋_; module ≋) open import Data.Unit.Polymorphic using (⊤; tt) open import Data.Vec.Functional using ([]) open import Relation.Binary using (Setoid) open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_) open import Functor.Instance.Nat.System {ℓ} using (Sys; map) open import Function.Base using (_∘_) open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_) open import Function.Construct.Setoid using (setoid) open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory; BraidedMonoidalCategory) open Func module _ where open System discrete : System 0 discrete .S = SingletonSetoid discrete .fₛ = Const.function (Values 0) (SingletonSetoid ⇒ₛ SingletonSetoid) (Id SingletonSetoid) discrete .fₒ = Const.function SingletonSetoid (Values 0) [] Sys-ε : SingletonSetoid {suc ℓ} {ℓ} ⟶ₛ Systemₛ 0 Sys-ε = Const.function SingletonSetoid (Systemₛ 0) discrete open import Categories.Category.Cartesian using (Cartesian) open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian) open Cartesian (Setoids-Cartesian {suc ℓ} {ℓ}) using (products) open import Categories.Category.BinaryProducts using (module BinaryProducts) open BinaryProducts products using (-×-) open import Categories.Functor using (_∘F_) open import Categories.Category.Product using (_⁂_) open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) open import Categories.Category.Cocartesian using (Cocartesian) open import Categories.Category.Instance.Nat using (Nat-Cocartesian) open Cocartesian Nat-Cocartesian using (module Dual; i₁; i₂; -+-; _+₁_; +-assocʳ; +-assocˡ; +-comm; +-swap; +₁∘+-swap; +₁∘i₁; +₁∘i₂) open Dual.op-binaryProducts using () renaming (×-assoc to +-assoc) open import Data.Product.Base using (_,_; dmap) renaming (map to ×-map) open import Categories.Functor using (Functor) open import Categories.Category.Product using (Product) open import Categories.Category.Instance.Nat using (Nat) open import Categories.Category.Instance.Setoids using (Setoids) open import Data.Fin using (_↑ˡ_; _↑ʳ_) open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_) open import Data.Nat using (ℕ; _+_) open import Data.Product.Base using (_×_) private variable n m o : ℕ c₁ c₂ c₃ c₄ c₅ c₆ : Level ℓ₁ ℓ₂ ℓ₃ ℓ₄ ℓ₅ ℓ₆ : Level open import Functor.Monoidal.Instance.Nat.Push using (++ₛ; Push,++,[]; Push-++; Push-assoc) open import Functor.Monoidal.Instance.Nat.Pull using (splitₛ; Pull,++,[]; ++-assoc; Pull-unitaryˡ; Pull-ε) open import Functor.Instance.Nat.Pull using (Pull; Pull₁; Pull-resp-≈; Pull-identity) open import Functor.Instance.Nat.Push using (Push₁; Push-identity) open import Data.Product.Function.NonDependent.Setoid using (_×-function_; proj₁ₛ; proj₂ₛ; <_,_>ₛ; swapₛ) _×-⇒_ : {A : Setoid c₁ ℓ₁} {B : Setoid c₂ ℓ₂} {C : Setoid c₃ ℓ₃} {D : Setoid c₄ ℓ₄} {E : Setoid c₅ ℓ₅} {F : Setoid c₆ ℓ₆} → A ⟶ₛ B ⇒ₛ C → D ⟶ₛ E ⇒ₛ F → A ×ₛ D ⟶ₛ B ×ₛ E ⇒ₛ C ×ₛ F _×-⇒_ f g .to (x , y) = to f x ×-function to g y _×-⇒_ f g .cong (x , y) = cong f x , cong g y open import Function.Construct.Setoid using (_∙_) ⊗ : System n × System m → System (n + m) ⊗ {n} {m} (S₁ , S₂) = record { S = S₁.S ×ₛ S₂.S ; fₛ = S₁.fₛ ×-⇒ S₂.fₛ ∙ splitₛ ; fₒ = ++ₛ ∙ S₁.fₒ ×-function S₂.fₒ } where module S₁ = System S₁ module S₂ = System S₂ open import Category.Instance.Setoids.SymmetricMonoidal {0ℓ} {0ℓ} using () renaming (Setoids-× to 0ℓ-Setoids-×) module 0ℓ-Setoids-× = SymmetricMonoidalCategory 0ℓ-Setoids-× renaming (braidedMonoidalCategory to B) open module ⇒ₛ {A} {B} = Setoid (setoid {0ℓ} {0ℓ} {0ℓ} {0ℓ} A B) using (_≈_) open import Categories.Functor.Monoidal.Symmetric Natop,+,0 0ℓ-Setoids-× using (module Strong) open SymmetricMonoidalCategory using () renaming (braidedMonoidalCategory to B) module Natop,+,0 = SymmetricMonoidalCategory Natop,+,0 renaming (braidedMonoidalCategory to B) open import Categories.Functor.Monoidal.Braided Natop,+,0.B 0ℓ-Setoids-×.B using () renaming (module Strong to StrongB) open Strong using (SymmetricMonoidalFunctor) open StrongB using (BraidedMonoidalFunctor) opaque _~_ : {A B : Setoid 0ℓ 0ℓ} → Func A B → Func A B → Set _~_ = _≈_ infix 4 _~_ sym-~ : {A B : Setoid 0ℓ 0ℓ} {x y : Func A B} → x ~ y → y ~ x sym-~ {A} {B} {x} {y} = 0ℓ-Setoids-×.Equiv.sym {A} {B} {x} {y} ⊗ₛ : {n m : ℕ} → Func (Systemₛ n ×ₛ Systemₛ m) (Systemₛ (n + m)) ⊗ₛ .to = ⊗ ⊗ₛ {n} {m} .cong {a , b} {c , d} ((a≤c , c≤a) , (b≤d , d≤b)) = left , right where module a = System a module b = System b module c = System c module d = System d open ≤-System module a≤c = ≤-System a≤c module b≤d = ≤-System b≤d module c≤a = ≤-System c≤a module d≤b = ≤-System d≤b open Setoid open System open import Data.Product.Base using (dmap) open import Data.Vec.Functional.Properties using (++-cong) left : ≤-System (⊗ₛ .to (a , b)) (⊗ₛ .to (c , d)) left = record { ⇒S = a≤c.⇒S ×-function b≤d.⇒S ; ≗-fₛ = λ i → dmap (a≤c.≗-fₛ (i ∘ i₁)) (b≤d.≗-fₛ (i ∘ i₂)) ; ≗-fₒ = λ (s₁ , s₂) → ++-cong (a.fₒ′ s₁) (c.fₒ′ (a≤c.⇒S ⟨$⟩ s₁)) (a≤c.≗-fₒ s₁) (b≤d.≗-fₒ s₂) } right : ≤-System (⊗ₛ .to (c , d)) (⊗ₛ .to (a , b)) right = record { ⇒S = c≤a.⇒S ×-function d≤b.⇒S ; ≗-fₛ = λ i → dmap (c≤a.≗-fₛ (i ∘ i₁)) (d≤b.≗-fₛ (i ∘ i₂)) ; ≗-fₒ = λ (s₁ , s₂) → ++-cong (c.fₒ′ s₁) (a.fₒ′ (c≤a.⇒S ⟨$⟩ s₁)) (c≤a.≗-fₒ s₁) (d≤b.≗-fₒ s₂) } open import Data.Fin using (Fin) System-⊗-≤ : {n n′ m m′ : ℕ} (X : System n) (Y : System m) (f : Fin n → Fin n′) (g : Fin m → Fin m′) → ≤-System (⊗ (map f X , map g Y)) (map (f +₁ g) (⊗ (X , Y))) System-⊗-≤ {n} {n′} {m} {m′} X Y f g = record { ⇒S = Id (X.S ×ₛ Y.S) ; ≗-fₛ = λ i _ → cong X.fₛ (≋.sym (≡.cong i ∘ +₁∘i₁)) , cong Y.fₛ (≋.sym (≡.cong i ∘ +₁∘i₂ {f = f})) ; ≗-fₒ = λ (s₁ , s₂) → Push-++ f g (X.fₒ′ s₁) (Y.fₒ′ s₂) } where module X = System X module Y = System Y System-⊗-≥ : {n n′ m m′ : ℕ} (X : System n) (Y : System m) (f : Fin n → Fin n′) (g : Fin m → Fin m′) → ≤-System (map (f +₁ g) (⊗ (X , Y))) (⊗ (map f X , map g Y)) System-⊗-≥ {n} {n′} {m} {m′} X Y f g = record { ⇒S = Id (X.S ×ₛ Y.S) -- ; ≗-fₛ = λ i _ → cong X.fₛ (≡.cong i ∘ +₁∘i₁) , cong Y.fₛ (≡.cong i ∘ +₁∘i₂ {f = f}) ; ≗-fₛ = λ i _ → cong (X.fₛ ×-⇒ Y.fₛ) (Pull-resp-≈ (+₁∘i₁ {n′}) {i} , Pull-resp-≈ (+₁∘i₂ {f = f}) {i}) ; ≗-fₒ = λ (s₁ , s₂) → ≋.sym (Push-++ f g (X.fₒ′ s₁) (Y.fₒ′ s₂)) } where module X = System X module Y = System Y import Relation.Binary.PropositionalEquality as ≡ ⊗-homomorphism : NaturalTransformation (-×- ∘F (Sys ⁂ Sys)) (Sys ∘F -+-) ⊗-homomorphism = ntHelper record { η = λ (n , m) → ⊗ₛ {n} {m} ; commute = λ { (f , g) {X , Y} → System-⊗-≤ X Y f g , System-⊗-≥ X Y f g } } ⊗-assoc-≤ : (X : System n) (Y : System m) (Z : System o) → ≤-System (map (+-assocˡ {n}) (⊗ (⊗ (X , Y) , Z))) (⊗ (X , ⊗ (Y , Z))) ⊗-assoc-≤ {n} {m} {o} X Y Z = record { ⇒S = ×-assocˡ ; ≗-fₛ = λ i ((s₁ , s₂) , s₃) → cong (X.fₛ ×-⇒ (Y.fₛ ×-⇒ Z.fₛ) ∙ assocˡ) (associativity-inv {x = i}) {s₁ , s₂ , s₃} ; ≗-fₒ = λ ((s₁ , s₂) , s₃) → Push-assoc (X.fₒ′ s₁) (Y.fₒ′ s₂) (Z.fₒ′ s₃) } where open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using () renaming (products to 0ℓ-products) open BinaryProducts 0ℓ-products using (assocˡ) open Cartesian (Setoids-Cartesian {ℓ} {ℓ}) using () renaming (products to prod) open BinaryProducts prod using () renaming (assocˡ to ×-assocˡ) module Pull,++,[] = SymmetricMonoidalFunctor Pull,++,[] module Pull,++,[]B = BraidedMonoidalFunctor (record { isBraidedMonoidal = Pull,++,[].isBraidedMonoidal }) open import Functor.Monoidal.Braided.Strong.Properties Pull,++,[].braidedMonoidalFunctor using (associativity-inv) module X = System X module Y = System Y module Z = System Z ⊗-assoc-≥ : (X : System n) (Y : System m) (Z : System o) → ≤-System (⊗ (X , ⊗ (Y , Z))) (map (+-assocˡ {n}) (⊗ (⊗ (X , Y) , Z))) ⊗-assoc-≥ {n} {m} {o} X Y Z = record { ⇒S = ×-assocʳ ; ≗-fₛ = λ i (s₁ , s₂ , s₃) → cong ((X.fₛ ×-⇒ Y.fₛ) ×-⇒ Z.fₛ) (sym-split-assoc {i}) {(s₁ , s₂) , s₃} ; ≗-fₒ = λ (s₁ , s₂ , s₃) → sym-++-assoc {(X.fₒ′ s₁ , Y.fₒ′ s₂) , Z.fₒ′ s₃} } where open Cartesian (Setoids-Cartesian {ℓ} {ℓ}) using () renaming (products to prod) open BinaryProducts prod using () renaming (assocʳ to ×-assocʳ) open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using () renaming (products to 0ℓ-products) open BinaryProducts 0ℓ-products using (×-assoc; assocˡ; assocʳ) open import Categories.Morphism.Reasoning 0ℓ-Setoids-×.U using (switch-tofromʳ) open import Categories.Functor.Monoidal.Symmetric using (module Lax) module Lax₂ = Lax Nat,+,0 0ℓ-Setoids-× module Pull,++,[] = Strong.SymmetricMonoidalFunctor Pull,++,[] open import Functor.Monoidal.Strong.Properties Pull,++,[].monoidalFunctor using (associativity-inv) module Push,++,[] = Lax₂.SymmetricMonoidalFunctor Push,++,[] +-assocℓ : Fin ((n + m) + o) → Fin (n + (m + o)) +-assocℓ = +-assocˡ {n} {m} {o} opaque unfolding _~_ associativity-inv-~ : splitₛ ×-function Id (Values o) ∙ splitₛ ∙ Pull₁ +-assocℓ ~ assocʳ ∙ Id (Values n) ×-function splitₛ ∙ splitₛ associativity-inv-~ {i} = associativity-inv {n} {m} {o} {i} associativity-~ : Push₁ (+-assocˡ {n} {m} {o}) ∙ ++ₛ ∙ ++ₛ ×-function Id (Values o) ~ ++ₛ ∙ Id (Values n) ×-function ++ₛ ∙ assocˡ associativity-~ {i} = Push,++,[].associativity {n} {m} {o} {i} sym-split-assoc-~ : assocʳ ∙ Id (Values n) ×-function splitₛ ∙ splitₛ ~ splitₛ ×-function Id (Values o) ∙ splitₛ ∙ Pull₁ +-assocℓ sym-split-assoc-~ = sym-~ associativity-inv-~ sym-++-assoc-~ : ++ₛ ∙ Id (Values n) ×-function ++ₛ ∙ assocˡ ~ Push₁ (+-assocˡ {n} {m} {o}) ∙ ++ₛ ∙ ++ₛ ×-function Id (Values o) sym-++-assoc-~ = sym-~ associativity-~ opaque unfolding _~_ sym-split-assoc : assocʳ ∙ Id (Values n) ×-function splitₛ ∙ splitₛ ≈ splitₛ ×-function Id (Values o) ∙ splitₛ ∙ Pull₁ +-assocℓ sym-split-assoc {i} = sym-split-assoc-~ {i} sym-++-assoc : ++ₛ ∙ Id (Values n) ×-function ++ₛ ∙ assocˡ ≈ Push₁ (+-assocˡ {n} {m} {o}) ∙ ++ₛ ∙ ++ₛ ×-function Id (Values o) sym-++-assoc {i} = sym-++-assoc-~ module X = System X module Y = System Y module Z = System Z open import Function.Base using (id) Sys-unitaryˡ-≤ : (X : System n) → ≤-System (map id (⊗ (discrete , X))) X Sys-unitaryˡ-≤ X = record { ⇒S = proj₂ₛ ; ≗-fₛ = λ i (_ , s) → X.refl ; ≗-fₒ = λ (_ , s) → Push-identity } where module X = System X Sys-unitaryˡ-≥ : (X : System n) → ≤-System X (map id (⊗ (discrete , X))) Sys-unitaryˡ-≥ {n} X = record { ⇒S = < Const.function X.S SingletonSetoid tt , Id X.S >ₛ ; ≗-fₛ = λ i s → tt , X.refl ; ≗-fₒ = λ s → Equiv.sym {x = Push₁ id} {Id (Values n)} Push-identity } where module X = System X open SymmetricMonoidalCategory 0ℓ-Setoids-× using (module Equiv) open import Data.Vec.Functional using (_++_) Sys-unitaryʳ-≤ : (X : System n) → ≤-System (map (id ++ (λ ())) (⊗ {n} {0} (X , discrete))) X Sys-unitaryʳ-≤ {n} X = record { ⇒S = proj₁ₛ ; ≗-fₛ = λ i (s , _) → cong (X.fₛ ∙ proj₁ₛ {B = SingletonSetoid {0ℓ}}) (unitaryʳ-inv {n} {i}) ; ≗-fₒ = λ (s , _) → Push,++,[].unitaryʳ {n} {X.fₒ′ s , tt} } where module X = System X module Pull,++,[] = Strong.SymmetricMonoidalFunctor Pull,++,[] open import Functor.Monoidal.Strong.Properties Pull,++,[].monoidalFunctor using (unitaryʳ-inv; module Shorthands) open import Categories.Functor.Monoidal.Symmetric Nat,+,0 0ℓ-Setoids-× using (module Lax) module Push,++,[] = Lax.SymmetricMonoidalFunctor Push,++,[] Sys-unitaryʳ-≥ : (X : System n) → ≤-System X (map (id ++ (λ ())) (⊗ {n} {0} (X , discrete))) Sys-unitaryʳ-≥ {n} X = record { ⇒S = < Id X.S , Const.function X.S SingletonSetoid tt >ₛ ; ≗-fₛ = λ i s → cong (X.fₛ ×-⇒ Const.function (Values 0) (SingletonSetoid ⇒ₛ SingletonSetoid) (Id (SingletonSetoid {ℓ} {ℓ})) ∙ Id (Values n) ×-function ε⇒) sym-split-unitaryʳ {s , tt} ; ≗-fₒ = λ s → sym-++-unitaryʳ {X.fₒ′ s , tt} } where module X = System X module Pull,++,[] = Strong.SymmetricMonoidalFunctor Pull,++,[] open import Functor.Monoidal.Strong.Properties Pull,++,[].monoidalFunctor using (unitaryʳ-inv; module Shorthands) open import Categories.Functor.Monoidal.Symmetric Nat,+,0 0ℓ-Setoids-× using (module Lax) module Push,++,[] = Lax.SymmetricMonoidalFunctor Push,++,[] import Categories.Category.Monoidal.Utilities 0ℓ-Setoids-×.monoidal as ⊗-Util open ⊗-Util.Shorthands using (ρ⇐) open Shorthands using (ε⇐; ε⇒) sym-split-unitaryʳ : ρ⇐ ≈ Id (Values n) ×-function ε⇐ ∙ splitₛ ∙ Pull₁ (id ++ (λ ())) sym-split-unitaryʳ = 0ℓ-Setoids-×.Equiv.sym {Values n} {Values n ×ₛ SingletonSetoid} {Id (Values n) ×-function ε⇐ ∙ splitₛ ∙ Pull₁ (id ++ (λ ()))} {ρ⇐} (unitaryʳ-inv {n}) sym-++-unitaryʳ : proj₁ₛ {B = SingletonSetoid {0ℓ} {0ℓ}} ≈ Push₁ (id ++ (λ ())) ∙ ++ₛ ∙ Id (Values n) ×-function ε⇒ sym-++-unitaryʳ = 0ℓ-Setoids-×.Equiv.sym {Values n ×ₛ SingletonSetoid} {Values n} {Push₁ (id ++ (λ ())) ∙ ++ₛ ∙ Id (Values n) ×-function ε⇒} {proj₁ₛ} (Push,++,[].unitaryʳ {n}) Sys-braiding-compat-≤ : (X : System n) (Y : System m) → ≤-System (map (+-swap {m} {n}) (⊗ (X , Y))) (⊗ (Y , X)) Sys-braiding-compat-≤ {n} {m} X Y = record { ⇒S = swapₛ ; ≗-fₛ = λ i (s₁ , s₂) → cong (Y.fₛ ×-⇒ X.fₛ ∙ swapₛ) (braiding-compat-inv {m} {n} {i}) {s₂ , s₁} ; ≗-fₒ = λ (s₁ , s₂) → Push,++,[].braiding-compat {n} {m} {X.fₒ′ s₁ , Y.fₒ′ s₂} } where module X = System X module Y = System Y module Pull,++,[] = SymmetricMonoidalFunctor Pull,++,[] module Pull,++,[]B = BraidedMonoidalFunctor (record { isBraidedMonoidal = Pull,++,[].isBraidedMonoidal }) open import Functor.Monoidal.Braided.Strong.Properties Pull,++,[].braidedMonoidalFunctor using (braiding-compat-inv) open import Categories.Functor.Monoidal.Symmetric Nat,+,0 0ℓ-Setoids-× using (module Lax) module Push,++,[] = Lax.SymmetricMonoidalFunctor Push,++,[] Sys-braiding-compat-≥ : (X : System n) (Y : System m) → ≤-System (⊗ (Y , X)) (map (+-swap {m} {n}) (⊗ (X , Y))) Sys-braiding-compat-≥ {n} {m} X Y = record { ⇒S = swapₛ ; ≗-fₛ = λ i (s₂ , s₁) → cong (X.fₛ ×-⇒ Y.fₛ) (sym-braiding-compat-inv {i}) ; ≗-fₒ = λ (s₂ , s₁) → sym-braiding-compat-++ {X.fₒ′ s₁ , Y.fₒ′ s₂} } where module X = System X module Y = System Y module Pull,++,[] = SymmetricMonoidalFunctor Pull,++,[] module Pull,++,[]B = BraidedMonoidalFunctor (record { isBraidedMonoidal = Pull,++,[].isBraidedMonoidal }) open import Functor.Monoidal.Braided.Strong.Properties Pull,++,[].braidedMonoidalFunctor using (braiding-compat-inv) open import Categories.Functor.Monoidal.Symmetric Nat,+,0 0ℓ-Setoids-× using (module Lax) module Push,++,[] = Lax.SymmetricMonoidalFunctor Push,++,[] sym-braiding-compat-inv : swapₛ ∙ splitₛ {m} ≈ splitₛ ∙ Pull₁ (+-swap {m} {n}) sym-braiding-compat-inv {i} = 0ℓ-Setoids-×.Equiv.sym {Values (m + n)} {Values n ×ₛ Values m} {splitₛ ∙ Pull₁ (+-swap {m} {n})} {swapₛ ∙ splitₛ {m}} (λ {j} → braiding-compat-inv {m} {n} {j}) {i} sym-braiding-compat-++ : ++ₛ {m} ∙ swapₛ ≈ Push₁ (+-swap {m} {n}) ∙ ++ₛ sym-braiding-compat-++ {i} = 0ℓ-Setoids-×.Equiv.sym {Values n ×ₛ Values m} {Values (m + n)} {Push₁ (+-swap {m} {n}) ∙ ++ₛ} {++ₛ {m} ∙ swapₛ} (Push,++,[].braiding-compat {n} {m}) open import Categories.Functor.Monoidal.Symmetric Nat,+,0 Setoids-× using (module Lax) open Lax.SymmetricMonoidalFunctor Sys,⊗,ε : Lax.SymmetricMonoidalFunctor Sys,⊗,ε .F = Sys Sys,⊗,ε .isBraidedMonoidal = record { isMonoidal = record { ε = Sys-ε ; ⊗-homo = ⊗-homomorphism ; associativity = λ { {n} {m} {o} {(X , Y), Z} → ⊗-assoc-≤ X Y Z , ⊗-assoc-≥ X Y Z } ; unitaryˡ = λ { {n} {_ , X} → Sys-unitaryˡ-≤ X , Sys-unitaryˡ-≥ X } ; unitaryʳ = λ { {n} {X , _} → Sys-unitaryʳ-≤ X , Sys-unitaryʳ-≥ X } } ; braiding-compat = λ { {n} {m} {X , Y} → Sys-braiding-compat-≤ X Y , Sys-braiding-compat-≥ X Y } }