aboutsummaryrefslogtreecommitdiff
path: root/Adjoint/Instance/Multiset.agda
blob: c51baa9a88d0e1e0824e2b2b5ce849e2eac454e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
{-# OPTIONS --without-K --safe #-}

open import Level using (Level; _⊔_; suc; 0)

module Adjoint.Instance.Multiset { : Level} where

open import Category.Instance.Setoids.SymmetricMonoidal {} {} using (Setoids-×)

private
  module S = Setoids-×

import Categories.Object.Monoid S.monoidal as MonoidObject
import Data.List as L
import Data.List.Relation.Binary.Permutation.Setoid as import Functor.Forgetful.Instance.CMonoid S.symmetric as CMonoid
import Functor.Forgetful.Instance.Monoid S.monoidal as Monoid
import Object.Monoid.Commutative S.symmetric as CMonoidObject

open import Categories.Adjoint using (_⊣_)
open import Categories.Category using (Category)
open import Categories.Functor using (Functor; id; _∘F_)
open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
open import Category.Construction.CMonoids using (CMonoids)
open import Data.CMonoid using (toCMonoid; toCMonoid⇒)
open import Data.Monoid using (toMonoid; toMonoid⇒)
open import Data.Opaque.Multiset using ([-]ₛ; Multisetₛ; foldₛ; ++ₛ-homo; []ₛ-homo; fold-mapₛ; fold)
open import Data.Product using (_,_; uncurry)
open import Data.Setoid using (∣_∣)
open import Function using (_⟶ₛ_; _⟨$⟩_)
open import Functor.Free.Instance.CMonoid {} {} using (Multisetₘ; mapₘ; MultisetCMonoid) renaming (Free to Free′)
open import Relation.Binary using (Setoid)

open CMonoidObject using (CommutativeMonoid; CommutativeMonoid⇒)
open CommutativeMonoid using (Carrier; monoid; identityʳ)
open CommutativeMonoid⇒ using (arr; monoid⇒)
open MonoidObject using (Monoid; Monoid⇒)
open Monoid⇒ using (preserves-μ; preserves-η)

CMon[S] : Category (suc )  ℓ
CMon[S] = CMonoids S.symmetric

Free : Functor S.U CMon[S]
Free = Free′

Forget : Functor CMon[S] S.U
Forget = Monoid.Forget ∘F CMonoid.Forget

opaque
  unfolding [-]ₛ
  map-[-]ₛ
      : {X Y : Setoid  }
        (f : X ⟶ₛ Y)
        {x :  X }
       (open Setoid (Multisetₛ Y))
       [-]ₛ ⟨$⟩ (f ⟨$⟩ x)
       arr (mapₘ f) ⟨$⟩ ([-]ₛ ⟨$⟩ x)
  map-[-]ₛ {X} {Y} f {x} = Setoid.refl (Multisetₛ Y)

unit : NaturalTransformation id (Forget ∘F Free)
unit = ntHelper record
    { η = λ X  [-]ₛ {} {} {X}
    ; commute = map-[-]ₛ
    }

opaque
  unfolding toMonoid MultisetCMonoid
  foldₘ : (X : CommutativeMonoid)  CommutativeMonoid⇒ (Multisetₘ (Carrier X)) X
  foldₘ X .monoid⇒ .Monoid⇒.arr = foldₛ (toCMonoid X)
  foldₘ X .monoid⇒ .preserves-μ {xs , ys} = ++ₛ-homo (toCMonoid X) xs ys
  foldₘ X .monoid⇒ .preserves-η {_} = []ₛ-homo (toCMonoid X)

opaque
  unfolding foldₘ toMonoid⇒
  fold-mapₘ
      : {X Y : CommutativeMonoid}
        (f : CommutativeMonoid⇒ X Y)
        {x :  Multisetₛ (Carrier X) }
       (open Setoid (Carrier Y))
       arr (foldₘ Y) ⟨$⟩ (arr (mapₘ (arr f)) ⟨$⟩ x)
       arr f ⟨$⟩ (arr (foldₘ X) ⟨$⟩ x)
  fold-mapₘ {X} {Y} f = uncurry (fold-mapₛ (toCMonoid X) (toCMonoid Y)) (toCMonoid⇒ X Y f)

counit : NaturalTransformation (Free ∘F Forget) id
counit = ntHelper record
    { η = foldₘ
    ; commute = fold-mapₘ
    }

opaque
  unfolding foldₘ fold Multisetₛ
  zig : (Aₛ  : Setoid  )
        {xs :  Multisetₛ Aₛ }
       (open Setoid (Multisetₛ Aₛ))
       arr (foldₘ (Multisetₘ Aₛ)) ⟨$⟩ (arr (mapₘ [-]ₛ) ⟨$⟩ xs)  xs
  zig Aₛ {L.[]} = ↭.↭-refl Aₛ
  zig Aₛ {x L.∷ xs} = ↭.prep (Setoid.refl Aₛ) (zig Aₛ)

opaque
  unfolding foldₘ fold
  zag : (M : CommutativeMonoid)
        {x :  Carrier M }
       (open Setoid (Carrier M))
       arr (foldₘ M) ⟨$⟩ ([-]ₛ ⟨$⟩ x)  x
  zag M {x} = Setoid.sym (Carrier M) (identityʳ M {x , _})

Multiset⊣ : Free  Forget
Multiset⊣ = record
    { unit = unit
    ; counit = counit
    ; zig = λ {X}  zig X
    ; zag = λ {M}  zag M
    }