1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
|
{-# OPTIONS --without-K --safe #-}
open import Level using (Level; suc; _⊔_)
module Category.Cartesian.Instance.FinitelyCocompletes {o ℓ e : Level} where
import Categories.Morphism as Morphism
import Categories.Morphism.Reasoning as ⇒-Reasoning
open import Categories.Category.BinaryProducts using (BinaryProducts)
open import Categories.Category.Cartesian.Bundle using (CartesianCategory)
open import Categories.Diagram.Coequalizer using (IsCoequalizer)
open import Categories.Functor.Bifunctor using (flip-bifunctor)
open import Categories.Functor.Core using (Functor)
open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_; niHelper)
open import Categories.NaturalTransformation.NaturalIsomorphism.Properties using (pointwise-iso)
open import Categories.Object.Coproduct using (IsCoproduct; IsCoproduct⇒Coproduct; Coproduct)
open import Categories.Object.Initial using (IsInitial)
open import Data.Product.Base using (_,_) renaming (_×_ to _×′_)
open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
open import Category.Instance.FinitelyCocompletes {o} {ℓ} {e} using (FinitelyCocompletes; FinitelyCocompletes-Cartesian; _×₁_)
open import Functor.Exact using (IsRightExact; RightExactFunctor)
open import Functor.Exact.Instance.Swap using (Swap)
FinitelyCocompletes-CC : CartesianCategory (suc (o ⊔ ℓ ⊔ e)) (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e)
FinitelyCocompletes-CC = record
{ U = FinitelyCocompletes
; cartesian = FinitelyCocompletes-Cartesian
}
module FinCoCom = CartesianCategory FinitelyCocompletes-CC
open BinaryProducts (FinCoCom.products) using (_×_; π₁; π₂; _⁂_; assocˡ) -- hiding (unique)
module _ (𝒞 : FinitelyCocompleteCategory o ℓ e) where
private
module 𝒞 = FinitelyCocompleteCategory 𝒞
module 𝒞×𝒞 = FinitelyCocompleteCategory (𝒞 × 𝒞)
open 𝒞 using ([_,_]; +-unique; i₁; i₂; _∘_; _+_; module Equiv; _⇒_; _+₁_; -+-)
open Equiv
private
module -+- = Functor -+-
+-resp-⊥
: {(A , B) : 𝒞×𝒞.Obj}
→ IsInitial 𝒞×𝒞.U (A , B)
→ IsInitial 𝒞.U (A + B)
+-resp-⊥ {A , B} A,B-isInitial = record
{ ! = [ A-isInitial.! , B-isInitial.! ]
; !-unique = λ { f → +-unique (sym (A-isInitial.!-unique (f ∘ i₁))) (sym (B-isInitial.!-unique (f ∘ i₂))) }
}
where
open IsRightExact
open RightExactFunctor
module A-isInitial = IsInitial (F-resp-⊥ (isRightExact (π₁ {𝒞} {𝒞})) A,B-isInitial)
module B-isInitial = IsInitial (F-resp-⊥ (isRightExact (π₂ {𝒞} {𝒞})) A,B-isInitial)
+-resp-+
: {(A₁ , A₂) (B₁ , B₂) (C₁ , C₂) : 𝒞×𝒞.Obj}
{(i₁-₁ , i₁-₂) : (A₁ ⇒ C₁) ×′ (A₂ ⇒ C₂)}
{(i₂-₁ , i₂-₂) : (B₁ ⇒ C₁) ×′ (B₂ ⇒ C₂)}
→ IsCoproduct 𝒞×𝒞.U (i₁-₁ , i₁-₂) (i₂-₁ , i₂-₂)
→ IsCoproduct 𝒞.U (i₁-₁ +₁ i₁-₂) (i₂-₁ +₁ i₂-₂)
+-resp-+ {A₁ , A₂} {B₁ , B₂} {C₁ , C₂} {i₁-₁ , i₁-₂} {i₂-₁ , i₂-₂} isCoproduct = record
{ [_,_] = λ { h₁ h₂ → [ Coprod₁.[ h₁ ∘ i₁ , h₂ ∘ i₁ ] , Coprod₂.[ h₁ ∘ i₂ , h₂ ∘ i₂ ] ] }
; inject₁ = inject₁
; inject₂ = inject₂
; unique = unique
}
where
open IsRightExact
open RightExactFunctor
module Coprod₁ = Coproduct (IsCoproduct⇒Coproduct 𝒞.U (F-resp-+ (isRightExact (π₁ {𝒞} {𝒞})) isCoproduct))
module Coprod₂ = Coproduct (IsCoproduct⇒Coproduct 𝒞.U (F-resp-+ (isRightExact (π₂ {𝒞} {𝒞})) isCoproduct))
open 𝒞 using ([]-cong₂; []∘+₁; +-g-η; +₁∘i₁; +₁∘i₂)
open 𝒞 using (Obj; _≈_; module HomReasoning; assoc)
open HomReasoning
open ⇒-Reasoning 𝒞.U
inject₁
: {X : Obj}
{h₁ : A₁ + A₂ ⇒ X}
{h₂ : B₁ + B₂ ⇒ X}
→ [ Coprod₁.[ h₁ ∘ i₁ , h₂ ∘ i₁ ] , Coprod₂.[ h₁ ∘ i₂ , h₂ ∘ i₂ ] ] ∘ (i₁-₁ +₁ i₁-₂) ≈ h₁
inject₁ {_} {h₁} {h₂} = begin
[ Coprod₁.[ h₁ ∘ i₁ , h₂ ∘ i₁ ] , Coprod₂.[ h₁ ∘ i₂ , h₂ ∘ i₂ ] ] ∘ (i₁-₁ +₁ i₁-₂) ≈⟨ []∘+₁ ⟩
[ Coprod₁.[ h₁ ∘ i₁ , h₂ ∘ i₁ ] ∘ i₁-₁ , Coprod₂.[ h₁ ∘ i₂ , h₂ ∘ i₂ ] ∘ i₁-₂ ] ≈⟨ []-cong₂ Coprod₁.inject₁ Coprod₂.inject₁ ⟩
[ h₁ ∘ i₁ , h₁ ∘ i₂ ] ≈⟨ +-g-η ⟩
h₁ ∎
inject₂
: {X : Obj}
{h₁ : A₁ + A₂ ⇒ X}
{h₂ : B₁ + B₂ ⇒ X}
→ [ Coprod₁.[ h₁ ∘ i₁ , h₂ ∘ i₁ ] , Coprod₂.[ h₁ ∘ i₂ , h₂ ∘ i₂ ] ] ∘ (i₂-₁ +₁ i₂-₂) ≈ h₂
inject₂ {_} {h₁} {h₂} = begin
[ Coprod₁.[ h₁ ∘ i₁ , h₂ ∘ i₁ ] , Coprod₂.[ h₁ ∘ i₂ , h₂ ∘ i₂ ] ] ∘ (i₂-₁ +₁ i₂-₂) ≈⟨ []∘+₁ ⟩
[ Coprod₁.[ h₁ ∘ i₁ , h₂ ∘ i₁ ] ∘ i₂-₁ , Coprod₂.[ h₁ ∘ i₂ , h₂ ∘ i₂ ] ∘ i₂-₂ ] ≈⟨ []-cong₂ Coprod₁.inject₂ Coprod₂.inject₂ ⟩
[ h₂ ∘ i₁ , h₂ ∘ i₂ ] ≈⟨ +-g-η ⟩
h₂ ∎
unique
: {X : Obj}
{i : C₁ + C₂ ⇒ X}
{h₁ : A₁ + A₂ ⇒ X}
{h₂ : B₁ + B₂ ⇒ X}
(eq₁ : i ∘ (i₁-₁ +₁ i₁-₂) ≈ h₁)
(eq₂ : i ∘ (i₂-₁ +₁ i₂-₂) ≈ h₂)
→ [ Coprod₁.[ h₁ ∘ i₁ , h₂ ∘ i₁ ] , Coprod₂.[ h₁ ∘ i₂ , h₂ ∘ i₂ ] ] ≈ i
unique {X} {i} {h₁} {h₂} eq₁ eq₂ = begin
[ Coprod₁.[ h₁ ∘ i₁ , h₂ ∘ i₁ ] , Coprod₂.[ h₁ ∘ i₂ , h₂ ∘ i₂ ] ] ≈⟨ []-cong₂ (Coprod₁.unique eq₁-₁ eq₂-₁) (Coprod₂.unique eq₁-₂ eq₂-₂) ⟩
[ i ∘ i₁ , i ∘ i₂ ] ≈⟨ +-g-η ⟩
i ∎
where
eq₁-₁ : (i ∘ i₁) ∘ i₁-₁ ≈ h₁ ∘ i₁
eq₁-₁ = begin
(i ∘ i₁) ∘ i₁-₁ ≈⟨ pushʳ +₁∘i₁ ⟨
i ∘ (i₁-₁ +₁ i₁-₂) ∘ i₁ ≈⟨ pullˡ eq₁ ⟩
h₁ ∘ i₁ ∎
eq₂-₁ : (i ∘ i₁) ∘ i₂-₁ ≈ h₂ ∘ i₁
eq₂-₁ = begin
(i ∘ i₁) ∘ i₂-₁ ≈⟨ pushʳ +₁∘i₁ ⟨
i ∘ (i₂-₁ +₁ i₂-₂) ∘ i₁ ≈⟨ pullˡ eq₂ ⟩
h₂ ∘ i₁ ∎
eq₁-₂ : (i ∘ i₂) ∘ i₁-₂ ≈ h₁ ∘ i₂
eq₁-₂ = begin
(i ∘ i₂) ∘ i₁-₂ ≈⟨ pushʳ +₁∘i₂ ⟨
i ∘ (i₁-₁ +₁ i₁-₂) ∘ i₂ ≈⟨ pullˡ eq₁ ⟩
h₁ ∘ i₂ ∎
eq₂-₂ : (i ∘ i₂) ∘ i₂-₂ ≈ h₂ ∘ i₂
eq₂-₂ = begin
(i ∘ i₂) ∘ i₂-₂ ≈⟨ pushʳ +₁∘i₂ ⟨
i ∘ (i₂-₁ +₁ i₂-₂) ∘ i₂ ≈⟨ pullˡ eq₂ ⟩
h₂ ∘ i₂ ∎
+-resp-coeq
: {(A₁ , A₂) (B₁ , B₂) (C₁ , C₂) : 𝒞×𝒞.Obj}
{(f₁ , f₂) (g₁ , g₂) : (A₁ ⇒ B₁) ×′ (A₂ ⇒ B₂)}
{(h₁ , h₂) : (B₁ ⇒ C₁) ×′ (B₂ ⇒ C₂)}
→ IsCoequalizer 𝒞×𝒞.U (f₁ , f₂) (g₁ , g₂) (h₁ , h₂)
→ IsCoequalizer 𝒞.U (f₁ +₁ f₂) (g₁ +₁ g₂) (h₁ +₁ h₂)
+-resp-coeq {A₁ , A₂} {B₁ , B₂} {C₁ , C₂} {f₁ , f₂} {g₁ , g₂} {h₁ , h₂} isCoeq = record
{ equality = sym -+-.homomorphism ○ []-cong₂ (refl⟩∘⟨ Coeq₁.equality) (refl⟩∘⟨ Coeq₂.equality) ○ -+-.homomorphism
; coequalize = coequalize
; universal = universal _
; unique = uniq _
}
where
open IsRightExact
open RightExactFunctor
module Coeq₁ = IsCoequalizer (F-resp-coeq (isRightExact (π₁ {𝒞} {𝒞})) isCoeq)
module Coeq₂ = IsCoequalizer (F-resp-coeq (isRightExact (π₂ {𝒞} {𝒞})) isCoeq)
open 𝒞 using ([]-cong₂; +₁∘i₁; +₁∘i₂; []∘+₁; +-g-η)
open 𝒞 using (Obj; _≈_; module HomReasoning; assoc; sym-assoc)
open 𝒞.HomReasoning
open ⇒-Reasoning 𝒞.U
module _ {X : Obj} {k : B₁ + B₂ ⇒ X} (eq : k ∘ (f₁ +₁ f₂) ≈ k ∘ (g₁ +₁ g₂)) where
eq₁ : (k ∘ i₁) ∘ f₁ ≈ (k ∘ i₁) ∘ g₁
eq₁ = begin
(k ∘ i₁) ∘ f₁ ≈⟨ pushʳ +₁∘i₁ ⟨
k ∘ (f₁ +₁ f₂) ∘ i₁ ≈⟨ extendʳ eq ⟩
k ∘ (g₁ +₁ g₂) ∘ i₁ ≈⟨ pushʳ +₁∘i₁ ⟩
(k ∘ i₁) ∘ g₁ ∎
eq₂ : (k ∘ i₂) ∘ f₂ ≈ (k ∘ i₂) ∘ g₂
eq₂ = begin
(k ∘ i₂) ∘ f₂ ≈⟨ pushʳ +₁∘i₂ ⟨
k ∘ (f₁ +₁ f₂) ∘ i₂ ≈⟨ extendʳ eq ⟩
k ∘ (g₁ +₁ g₂) ∘ i₂ ≈⟨ pushʳ +₁∘i₂ ⟩
(k ∘ i₂) ∘ g₂ ∎
coequalize : C₁ + C₂ ⇒ X
coequalize = [ Coeq₁.coequalize eq₁ , Coeq₂.coequalize eq₂ ]
universal : k ≈ coequalize ∘ (h₁ +₁ h₂)
universal = begin
k ≈⟨ +-g-η ⟨
[ k ∘ i₁ , k ∘ i₂ ] ≈⟨ []-cong₂ Coeq₁.universal Coeq₂.universal ⟩
[ Coeq₁.coequalize eq₁ ∘ h₁ , Coeq₂.coequalize eq₂ ∘ h₂ ] ≈⟨ []∘+₁ ⟨
coequalize ∘ (h₁ +₁ h₂) ∎
uniq : {i : C₁ + C₂ ⇒ X} → k ≈ i ∘ (h₁ +₁ h₂) → i ≈ coequalize
uniq {i} eq′ = begin
i ≈⟨ +-g-η ⟨
[ i ∘ i₁ , i ∘ i₂ ] ≈⟨ []-cong₂ (Coeq₁.unique eq₁′) (Coeq₂.unique eq₂′) ⟩
[ Coeq₁.coequalize eq₁ , Coeq₂.coequalize eq₂ ] ∎
where
eq₁′ : k ∘ i₁ ≈ (i ∘ i₁) ∘ h₁
eq₁′ = eq′ ⟩∘⟨refl ○ extendˡ +₁∘i₁
eq₂′ : k ∘ i₂ ≈ (i ∘ i₂) ∘ h₂
eq₂′ = eq′ ⟩∘⟨refl ○ extendˡ +₁∘i₂
module _ {𝒞 : FinitelyCocompleteCategory o ℓ e} where
open FinCoCom using (_⇒_; _∘_; id)
module 𝒞 = FinitelyCocompleteCategory 𝒞
-+- : 𝒞 × 𝒞 ⇒ 𝒞
-+- = record
{ F = 𝒞.-+-
; isRightExact = record
{ F-resp-⊥ = +-resp-⊥ 𝒞
; F-resp-+ = +-resp-+ 𝒞
; F-resp-coeq = +-resp-coeq 𝒞
}
}
module x+y = RightExactFunctor -+-
↔-+- : 𝒞 × 𝒞 ⇒ 𝒞
↔-+- = -+- ∘ Swap 𝒞 𝒞
module y+x = RightExactFunctor ↔-+-
[x+y]+z : (𝒞 × 𝒞) × 𝒞 ⇒ 𝒞
[x+y]+z = -+- ∘ (-+- ×₁ id)
module [x+y]+z = RightExactFunctor [x+y]+z
x+[y+z] : (𝒞 × 𝒞) × 𝒞 ⇒ 𝒞
x+[y+z] = -+- ∘ (id ×₁ -+-) ∘ assocˡ
module x+[y+z] = RightExactFunctor x+[y+z]
assoc-≃ : [x+y]+z.F ≃ x+[y+z].F
assoc-≃ = pointwise-iso (λ { ((X , Y) , Z) → ≅.sym (𝒞.+-assoc {X} {Y} {Z})}) commute
where
open 𝒞
module 𝒞×𝒞×𝒞 = FinitelyCocompleteCategory ((𝒞 × 𝒞) × 𝒞)
open Morphism U using (_≅_; module ≅)
module +-assoc {X} {Y} {Z} = _≅_ (≅.sym (+-assoc {X} {Y} {Z}))
open import Categories.Category.BinaryProducts using (BinaryProducts)
open import Categories.Object.Duality 𝒞.U using (Coproduct⇒coProduct)
op-binaryProducts : BinaryProducts op
op-binaryProducts = record { product = Coproduct⇒coProduct coproduct }
open BinaryProducts op-binaryProducts using () renaming (assocʳ∘⁂ to +₁∘assocˡ)
open Equiv
commute
: {((X , Y) , Z) : 𝒞×𝒞×𝒞.Obj}
{((X′ , Y′) , Z′) : 𝒞×𝒞×𝒞.Obj}
→ (F : ((X , Y) , Z) 𝒞×𝒞×𝒞.⇒ ((X′ , Y′) , Z′))
→ (+-assoc.from 𝒞.∘ [x+y]+z.₁ F)
≈ (x+[y+z].₁ F 𝒞.∘ +-assoc.from)
commute {(X , Y) , Z} {(X′ , Y′) , Z′} ((F , G) , H) = sym +₁∘assocˡ
|