blob: 1523223b244d68113c4a9951b94ec15b1eda2aac (
plain)
| 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
 | {-# OPTIONS --without-K --safe #-}
open import Categories.Category.Core using (Category)
module Category.Diagram.Pushout {o ℓ e} (𝒞 : Category o ℓ e) where
open Category 𝒞
open import Categories.Diagram.Duality 𝒞 using (Pushout⇒coPullback)
open import Categories.Diagram.Pushout 𝒞 using (Pushout)
open import Categories.Diagram.Pushout.Properties 𝒞 using (glue; swap)
open import Categories.Morphism 𝒞 using (_≅_)
open import Categories.Morphism.Duality 𝒞 using (op-≅⇒≅)
open import Categories.Morphism.Reasoning 𝒞 using
    ( id-comm
    ; id-comm-sym
    ; assoc²εβ
    ; assoc²γδ
    ; assoc²γβ
    ; assoc²βγ
    ; introʳ
    ; elimʳ
    )
private
  variable
    A B C D : Obj
    f g h : A ⇒ B
glue-i₁ : (p : Pushout f g) → Pushout h (Pushout.i₁ p) → Pushout (h ∘ f) g
glue-i₁ p = glue p
glue-i₂ : (p₁ : Pushout f g) → Pushout (Pushout.i₂ p₁) h → Pushout f (h ∘ g)
glue-i₂ p₁ p₂ = swap (glue (swap p₁) (swap p₂))
pushout-f-id : Pushout f id
pushout-f-id {_} {_} {f} = record
    { i₁ = id
    ; i₂ = f
    ; isPushout = record
        { commute = id-comm-sym
        ; universal = λ {B} {h₁} {h₂} eq → h₁
        ; universal∘i₁≈h₁ = λ {E} {h₁} {h₂} {eq} → identityʳ
        ; universal∘i₂≈h₂ = λ {E} {h₁} {h₂} {eq} → eq ○ identityʳ
        ; unique-diagram = λ eq₁ eq₂ → Equiv.sym identityʳ ○ eq₁ ○ identityʳ
        }
    }
  where
    open HomReasoning
pushout-id-g : Pushout id g
pushout-id-g {A} {B} {g} = record
    { i₁ = g
    ; i₂ = id
    ; isPushout = record
        { commute = id-comm
        ; universal = λ {B} {h₁} {h₂} eq → h₂
        ; universal∘i₁≈h₁ = λ {E} {h₁} {h₂} {eq} → Equiv.sym eq ○ identityʳ
        ; universal∘i₂≈h₂ = λ {E} {h₁} {h₂} {eq} → identityʳ
        ; unique-diagram = λ eq₁ eq₂ → Equiv.sym identityʳ ○ eq₂ ○ identityʳ
        }
    }
  where
    open HomReasoning
extend-i₁-iso
    : {f : A ⇒ B}
      {g : A ⇒ C}
      (p : Pushout f g)
      (B≅D : B ≅ D)
    → Pushout (_≅_.from B≅D ∘ f) g
extend-i₁-iso {_} {_} {_} {_} {f} {g} p B≅D = record
    { i₁ = P.i₁ ∘ B≅D.to
    ; i₂ = P.i₂
    ; isPushout = record
        { commute = begin
              (P.i₁ ∘ B≅D.to) ∘ B≅D.from ∘ f  ≈⟨ assoc²γδ ⟩
              P.i₁ ∘ (B≅D.to ∘ B≅D.from) ∘ f  ≈⟨ refl⟩∘⟨ B≅D.isoˡ ⟩∘⟨refl ⟩
              P.i₁ ∘ id ∘ f                   ≈⟨ refl⟩∘⟨ identityˡ ⟩
              P.i₁ ∘ f                        ≈⟨ P.commute ⟩
              P.i₂ ∘ g                        ∎
        ; universal = λ { eq → P.universal (assoc ○ eq) }
        ; universal∘i₁≈h₁ = λ {E} {h₁} {_} {eq} →
            begin
                P.universal (assoc ○ eq) ∘ P.i₁ ∘ B≅D.to    ≈⟨ sym-assoc ⟩
                (P.universal (assoc ○ eq) ∘ P.i₁) ∘ B≅D.to  ≈⟨ P.universal∘i₁≈h₁ ⟩∘⟨refl ⟩
                (h₁ ∘ B≅D.from) ∘ B≅D.to                    ≈⟨ assoc ⟩
                h₁ ∘ B≅D.from ∘ B≅D.to                      ≈⟨ refl⟩∘⟨ B≅D.isoʳ ⟩
                h₁ ∘ id                                     ≈⟨ identityʳ ⟩
                h₁                                          ∎
        ; universal∘i₂≈h₂ = P.universal∘i₂≈h₂
        ; unique-diagram = λ {_} {h} {j} ≈₁ ≈₂ →
              let
                ≈₁′ = begin
                    h ∘ P.i₁                        ≈⟨ introʳ B≅D.isoˡ ⟩
                    (h ∘ P.i₁) ∘ B≅D.to ∘ B≅D.from  ≈⟨ assoc²γβ ⟩
                    (h ∘ P.i₁ ∘ B≅D.to) ∘ B≅D.from  ≈⟨ ≈₁ ⟩∘⟨refl ⟩
                    (j ∘ P.i₁ ∘ B≅D.to) ∘ B≅D.from  ≈⟨ assoc²βγ ⟩
                    (j ∘ P.i₁) ∘ B≅D.to ∘ B≅D.from  ≈⟨ elimʳ B≅D.isoˡ ⟩
                    j ∘ P.i₁                        ∎
              in P.unique-diagram ≈₁′ ≈₂
        }
    }
  where
    module P = Pushout p
    module B≅D = _≅_ B≅D
    open HomReasoning
extend-i₂-iso
    : {f : A ⇒ B}
      {g : A ⇒ C}
      (p : Pushout f g)
      (C≅D : C ≅ D)
    → Pushout f (_≅_.from C≅D ∘ g)
extend-i₂-iso {_} {_} {_} {_} {f} {g} p C≅D = swap (extend-i₁-iso (swap p) C≅D)
 |