aboutsummaryrefslogtreecommitdiff
path: root/Category/Instance/FinitelyCocompletes.agda
blob: 0847165cccbeb8f20352c898433ad0e49679b4c7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
{-# OPTIONS --without-K --safe #-}
open import Level using (Level)
module Category.Instance.FinitelyCocompletes {o  e : Level} where

open import Categories.Category using (_[_,_])
open import Categories.Category.BinaryProducts using (BinaryProducts)
open import Categories.Category.Cartesian using (Cartesian)
open import Categories.Category.Helper using (categoryHelper)
open import Categories.Category.Monoidal.Instance.Cats using () renaming (module Product to Products)
open import Categories.Category.Core using (Category)
open import Categories.Category.Instance.Cats using (Cats)
open import Categories.Category.Instance.One using (One; One-⊤)
open import Categories.Category.Product using (πˡ; πʳ; _※_; _⁂_) renaming (Product to ProductCat)
open import Categories.Diagram.Coequalizer using (IsCoequalizer)
open import Categories.Functor using (Functor) renaming (id to idF)
open import Categories.Object.Coproduct using (IsCoproduct)
open import Categories.Object.Initial using (IsInitial)
open import Categories.Object.Product.Core using (Product)
open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_; associator; unitorˡ; unitorʳ; module ≃; _ⓘ_)
open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
open import Category.Cocomplete.Finitely.Product using (FinitelyCocomplete-×)
open import Category.Instance.One.Properties using (One-FinitelyCocomplete)
open import Data.Product.Base using (_,_; proj₁; proj₂; map; dmap; zip′)
open import Functor.Exact using (∘-RightExactFunctor; RightExactFunctor; idREF; IsRightExact; rightexact)
open import Function.Base using (id; flip)
open import Level using (Level; suc; _⊔_)

FinitelyCocompletes : Category (suc (o    e)) (o    e) (o    e)
FinitelyCocompletes = categoryHelper record
    { Obj = FinitelyCocompleteCategory o  e
    ; _⇒_ = RightExactFunctor
    ; _≈_ = λ F G  REF.F F  REF.F G
    ; id = idREF
    ; _∘_ = ∘-RightExactFunctor
    ; assoc = λ {_ _ _ _ F G H}  associator (REF.F F) (REF.F G) (REF.F H)
    ; identityˡ = unitorˡ
    ; identityʳ = unitorʳ
    ; equiv = record
        { refl = ≃.refl
        ; sym = ≃.sym
        ; trans = ≃.trans
        }
    ; ∘-resp-≈ = _ⓘₕ_
    }
  where
    module REF = RightExactFunctor

One-FCC : FinitelyCocompleteCategory o  e
One-FCC = record
    { U = One
    ; finCo = One-FinitelyCocomplete
    }

_×_
    : FinitelyCocompleteCategory o  e
     FinitelyCocompleteCategory o  e
     FinitelyCocompleteCategory o  e
_×_ 𝒞 𝒟 = record
    { U = ProductCat 𝒞.U 𝒟.U
    ; finCo = FinitelyCocomplete-× 𝒞.finCo 𝒟.finCo
    }
  where
    module 𝒞 = FinitelyCocompleteCategory 𝒞
    module 𝒟 = FinitelyCocompleteCategory 𝒟

module _ (𝒞 𝒟 : FinitelyCocompleteCategory o  e) where

  private
    module 𝒞 = FinitelyCocompleteCategory 𝒞
    module 𝒟 = FinitelyCocompleteCategory 𝒟
    module 𝒞×𝒟 = FinitelyCocompleteCategory (𝒞 × 𝒟)

  πˡ-RightExact : IsRightExact (𝒞 × 𝒟) 𝒞 πˡ
  πˡ-RightExact = record
      { F-resp-⊥ = F-resp-⊥
      ; F-resp-+ = F-resp-+
      ; F-resp-coeq = F-resp-coeq
      }
    where
      F-resp-⊥
          : {(A , B) : 𝒞×𝒟.Obj}
           IsInitial 𝒞×𝒟.U (A , B)
           IsInitial 𝒞.U A
      F-resp-⊥ {A , B} initial = record
          { ! = λ { {C}  proj₁ (! {C , B}) }
          ; !-unique = λ { f  proj₁ (!-unique (f , 𝒟.id)) }
          }
        where
          open IsInitial initial
      F-resp-+
          : {(C₁ , D₁) (C₂ , D₂) (C₃ , D₃) : 𝒞×𝒟.Obj}
            {(i₁-c , i₁-d) : 𝒞×𝒟.U [ (C₁ , D₁) , (C₃ , D₃) ]}
            {(i₂-c , i₂-d) : 𝒞×𝒟.U [ (C₂ , D₂) , (C₃ , D₃) ]}
           IsCoproduct (ProductCat 𝒞.U 𝒟.U) (i₁-c , i₁-d) (i₂-c , i₂-d)
           IsCoproduct 𝒞.U i₁-c i₂-c
      F-resp-+ {_} {_} {_} {i₁-c , i₁-d} {i₂-c , i₂-d} isCoproduct = record
          { [_,_] = λ { h₁ h₂  proj₁ (copairing (h₁ , i₁-d) (h₂ , i₂-d)) }
          ; inject₁ = proj₁ inject₁
          ; inject₂ = proj₁ inject₂
          ; unique = λ { eq₁ eq₂  proj₁ (unique (eq₁ , 𝒟.identityˡ) (eq₂ , 𝒟.identityˡ)) }
          }
        where
          open IsCoproduct isCoproduct renaming ([_,_] to copairing)
      F-resp-coeq
          : {(C₁ , D₁) (C₂ , D₂) (C₃ , D₃) : 𝒞×𝒟.Obj}
            {f g : 𝒞×𝒟.U [ (C₁ , D₁) , (C₂ , D₂) ]}
            {h : 𝒞×𝒟.U [ (C₂ , D₂) , (C₃ , D₃) ]}
           IsCoequalizer (ProductCat 𝒞.U 𝒟.U) f g h
           IsCoequalizer 𝒞.U (proj₁ f) (proj₁ g) (proj₁ h)
      F-resp-coeq isCoequalizer = record
          { equality = proj₁ equality
          ; coequalize = λ { eq  proj₁ (coequalize (eq , proj₂ equality)) }
          ; universal = proj₁ universal
          ; unique = λ { eq  proj₁ (unique (eq , 𝒟.Equiv.sym 𝒟.identityˡ)) }
          }
        where
          open IsCoequalizer isCoequalizer

  πʳ-RightExact : IsRightExact (𝒞 × 𝒟) 𝒟 πʳ
  πʳ-RightExact = record
      { F-resp-⊥ = F-resp-⊥
      ; F-resp-+ = F-resp-+
      ; F-resp-coeq = F-resp-coeq
      }
    where
      F-resp-⊥
          : {(A , B) : 𝒞×𝒟.Obj}
           IsInitial 𝒞×𝒟.U (A , B)
           IsInitial 𝒟.U B
      F-resp-⊥ {A , B} initial = record
          { ! = λ { {C}  proj₂ (! {A , C}) }
          ; !-unique = λ { f  proj₂ (!-unique (𝒞.id , f)) }
          }
        where
          open IsInitial initial
      F-resp-+
          : {(C₁ , D₁) (C₂ , D₂) (C₃ , D₃) : 𝒞×𝒟.Obj}
            {(i₁-c , i₁-d) : 𝒞×𝒟.U [ (C₁ , D₁) , (C₃ , D₃) ]}
            {(i₂-c , i₂-d) : 𝒞×𝒟.U [ (C₂ , D₂) , (C₃ , D₃) ]}
           IsCoproduct 𝒞×𝒟.U (i₁-c , i₁-d) (i₂-c , i₂-d)
           IsCoproduct 𝒟.U i₁-d i₂-d
      F-resp-+ {_} {_} {_} {i₁-c , i₁-d} {i₂-c , i₂-d} isCoproduct = record
          { [_,_] = λ { h₁ h₂  proj₂ (copairing (i₁-c , h₁) (i₂-c , h₂)) }
          ; inject₁ = proj₂ inject₁
          ; inject₂ = proj₂ inject₂
          ; unique = λ { eq₁ eq₂  proj₂ (unique (𝒞.identityˡ , eq₁) (𝒞.identityˡ , eq₂)) }
          }
        where
          open IsCoproduct isCoproduct renaming ([_,_] to copairing)
      F-resp-coeq
          : {(C₁ , D₁) (C₂ , D₂) (C₃ , D₃) : 𝒞×𝒟.Obj}
            {f g : 𝒞×𝒟.U [ (C₁ , D₁) , (C₂ , D₂) ]}
            {h : 𝒞×𝒟.U [ (C₂ , D₂) , (C₃ , D₃) ]}
           IsCoequalizer 𝒞×𝒟.U f g h
           IsCoequalizer 𝒟.U (proj₂ f) (proj₂ g) (proj₂ h)
      F-resp-coeq isCoequalizer = record
          { equality = proj₂ equality
          ; coequalize = λ { eq  proj₂ (coequalize (proj₁ equality , eq)) }
          ; universal = proj₂ universal
          ; unique = λ { eq  proj₂ (unique (𝒞.Equiv.sym 𝒞.identityˡ , eq)) }
          }
        where
          open IsCoequalizer isCoequalizer

module _ where

  open FinitelyCocompleteCategory using (U)

  IsRightExact-※
      : {𝒞 𝒟  : FinitelyCocompleteCategory o  e}
        (F : Functor (U 𝒞) (U 𝒟))
        (G : Functor (U 𝒞) (U ))
       IsRightExact 𝒞 𝒟 F
       IsRightExact 𝒞  G
       IsRightExact 𝒞 (𝒟 × ) (F  G)
  IsRightExact-※ {𝒞} {𝒟} {} F G isRightExact-F isRightExact-G = record 
      { F-resp-⊥ = F-resp-⊥′
      ; F-resp-+ = F-resp-+′
      ; F-resp-coeq = F-resp-coeq′
      }
    where
      module 𝒞 = FinitelyCocompleteCategory 𝒞
      module 𝒟 = FinitelyCocompleteCategory 𝒟
      module  = FinitelyCocompleteCategory       open IsRightExact isRightExact-F
      open IsRightExact isRightExact-G renaming (F-resp-⊥ to G-resp-⊥; F-resp-+ to G-resp-+; F-resp-coeq to G-resp-coeq)
      module F = Functor F
      module G = Functor G
      F-resp-⊥′
          : {A : 𝒞.Obj}
           IsInitial 𝒞.U A
           IsInitial (ProductCat 𝒟.U ℰ.U) (F.₀ A , G.₀ A)
      F-resp-⊥′ A-isInitial = record
          { ! = F[A]-isInitial.! , G[A]-isInitial.!
          ; !-unique = dmap F[A]-isInitial.!-unique G[A]-isInitial.!-unique
          }
        where
          module F[A]-isInitial = IsInitial (F-resp-⊥ A-isInitial)
          module G[A]-isInitial = IsInitial (G-resp-⊥ A-isInitial)
      F-resp-+′
          : {A B C : 𝒞.Obj} {i₁ : 𝒞.U [ A , C ]} {i₂ : 𝒞.U [ B , C ]}
           IsCoproduct 𝒞.U i₁ i₂
           IsCoproduct (ProductCat 𝒟.U ℰ.U) (F.₁ i₁ , G.₁ i₁) (F.₁ i₂ , G.₁ i₂)
      F-resp-+′ {A} {B} {A+B} A+B-isCoproduct = record
          { [_,_] = zip′ F[A+B]-isCoproduct.[_,_] G[A+B]-isCoproduct.[_,_]
          ; inject₁ = F[A+B]-isCoproduct.inject₁ , G[A+B]-isCoproduct.inject₁
          ; inject₂ = F[A+B]-isCoproduct.inject₂ , G[A+B]-isCoproduct.inject₂
          ; unique = zip′ F[A+B]-isCoproduct.unique G[A+B]-isCoproduct.unique
          }
        where
          module F[A+B]-isCoproduct = IsCoproduct (F-resp-+ A+B-isCoproduct)
          module G[A+B]-isCoproduct = IsCoproduct (G-resp-+ A+B-isCoproduct)
      F-resp-coeq′
          : {A B C : 𝒞.Obj} {f g : 𝒞.U [ A , B ]} {h : 𝒞.U [ B , C ]}
           IsCoequalizer 𝒞.U f g h
           IsCoequalizer (ProductCat 𝒟.U ℰ.U) (F.₁ f , G.₁ f) (F.₁ g , G.₁ g) (F.₁ h , G.₁ h)
      F-resp-coeq′ h-isCoequalizer = record
          { equality = F[h]-isCoequalizer.equality , G[h]-isCoequalizer.equality
          ; coequalize = map F[h]-isCoequalizer.coequalize G[h]-isCoequalizer.coequalize
          ; universal = F[h]-isCoequalizer.universal , G[h]-isCoequalizer.universal
          ; unique = map F[h]-isCoequalizer.unique G[h]-isCoequalizer.unique
          }
        where
          module F[h]-isCoequalizer = IsCoequalizer (F-resp-coeq h-isCoequalizer)
          module G[h]-isCoequalizer = IsCoequalizer (G-resp-coeq h-isCoequalizer)

  IsRightExact-⁂
      : {𝒜  𝒞 𝒟 : FinitelyCocompleteCategory o  e}
        (F : Functor (U 𝒜) (U 𝒞))
        (G : Functor (U ) (U 𝒟))
       IsRightExact 𝒜 𝒞 F
       IsRightExact  𝒟 G
       IsRightExact (𝒜 × ) (𝒞 × 𝒟) (F  G)
  IsRightExact-⁂ {𝒜} {} {𝒞} {𝒟} F G isRightExact-F isRightExact-G = record 
      { F-resp-⊥ = F-resp-⊥′
      ; F-resp-+ = F-resp-+′
      ; F-resp-coeq = F-resp-coeq′
      }
    where
      module 𝒜 = FinitelyCocompleteCategory 𝒜
      module  = FinitelyCocompleteCategory       module 𝒞 = FinitelyCocompleteCategory 𝒞
      module 𝒟 = FinitelyCocompleteCategory 𝒟
      module 𝒜× = FinitelyCocompleteCategory (𝒜 × )
      module 𝒞×𝒟 = FinitelyCocompleteCategory (𝒞 × 𝒟)
      open IsRightExact isRightExact-F
      open IsRightExact isRightExact-G renaming (F-resp-⊥ to G-resp-⊥; F-resp-+ to G-resp-+; F-resp-coeq to G-resp-coeq)
      module F = Functor F
      module G = Functor G
      F-resp-⊥′
          : {(A , B) : 𝒜×ℬ.Obj}
           IsInitial 𝒜×ℬ.U (A , B)
           IsInitial 𝒞×𝒟.U (F.₀ A , G.₀ B)
      F-resp-⊥′ {A , B} A,B-isInitial = record
          { ! = F[A]-isInitial.! , G[B]-isInitial.!
          ; !-unique = dmap F[A]-isInitial.!-unique G[B]-isInitial.!-unique
          }
        where
          module A,B-isInitial = IsInitial A,B-isInitial
          A-isInitial : IsInitial 𝒜.U A
          A-isInitial = record
              { ! = λ { {X}  proj₁ (A,B-isInitial.! {X , B}) }
              ; !-unique = λ { f  proj₁ (A,B-isInitial.!-unique (f , ℬ.id)) }
              }
          B-isInitial : IsInitial ℬ.U B
          B-isInitial = record
              { ! = λ { {X}  proj₂ (A,B-isInitial.! {A , X}) }
              ; !-unique = λ { f  proj₂ (A,B-isInitial.!-unique (𝒜.id , f)) }
              }
          module F[A]-isInitial = IsInitial (F-resp-⊥ A-isInitial)
          module G[B]-isInitial = IsInitial (G-resp-⊥ B-isInitial)
      F-resp-+′
          : {A B C : 𝒜×ℬ.Obj} {(i₁ , i₁′) : 𝒜×ℬ.U [ A , C ]} {(i₂ , i₂′) : 𝒜×ℬ.U [ B , C ]}
           IsCoproduct 𝒜×ℬ.U (i₁ , i₁′) (i₂ , i₂′)
           IsCoproduct 𝒞×𝒟.U (F.₁ i₁ , G.₁ i₁′) (F.₁ i₂ , G.₁ i₂′)
      F-resp-+′ {A} {B} {A+B} {i₁ , i₁′} {i₂ , i₂′} A+B,A+B′-isCoproduct = record
          { [_,_] = zip′ F[A+B]-isCoproduct.[_,_] G[A+B′]-isCoproduct.[_,_]
          ; inject₁ = F[A+B]-isCoproduct.inject₁ , G[A+B′]-isCoproduct.inject₁
          ; inject₂ = F[A+B]-isCoproduct.inject₂ , G[A+B′]-isCoproduct.inject₂
          ; unique = zip′ F[A+B]-isCoproduct.unique G[A+B′]-isCoproduct.unique
          }
        where
          module A+B,A+B′-isCoproduct = IsCoproduct A+B,A+B′-isCoproduct
          A+B-isCoproduct : IsCoproduct 𝒜.U i₁ i₂
          A+B-isCoproduct = record
              { [_,_] = λ { f g  proj₁ (A+B,A+B′-isCoproduct.[ (f , i₁′) , (g , i₂′) ]) }
              ; inject₁ = proj₁ A+B,A+B′-isCoproduct.inject₁
              ; inject₂ = proj₁ A+B,A+B′-isCoproduct.inject₂
              ; unique = λ { ≈f ≈g  proj₁ (A+B,A+B′-isCoproduct.unique (≈f , ℬ.identityˡ) (≈g , ℬ.identityˡ)) }
              }
          A+B′-isCoproduct : IsCoproduct ℬ.U i₁′ i₂′
          A+B′-isCoproduct = record
              { [_,_] = λ { f g  proj₂ (A+B,A+B′-isCoproduct.[ (i₁ , f) , (i₂ , g) ]) }
              ; inject₁ = proj₂ A+B,A+B′-isCoproduct.inject₁
              ; inject₂ = proj₂ A+B,A+B′-isCoproduct.inject₂
              ; unique = λ { ≈f ≈g  proj₂ (A+B,A+B′-isCoproduct.unique (𝒜.identityˡ , ≈f) (𝒜.identityˡ , ≈g)) }
              }
          module F[A+B]-isCoproduct = IsCoproduct (F-resp-+ A+B-isCoproduct)
          module G[A+B′]-isCoproduct = IsCoproduct (G-resp-+ A+B′-isCoproduct)
      F-resp-coeq′
          : {A B C : 𝒜×ℬ.Obj} {(f , f′) (g , g′) : 𝒜×ℬ.U [ A , B ]} {(h , h′) : 𝒜×ℬ.U [ B , C ]}
           IsCoequalizer 𝒜×ℬ.U (f , f′) (g , g′) (h , h′)
           IsCoequalizer 𝒞×𝒟.U (F.₁ f , G.₁ f′) (F.₁ g , G.₁ g′) (F.₁ h , G.₁ h′)
      F-resp-coeq′ {_} {_} {_} {f , f′} {g , g′} {h , h′} h,h′-isCoequalizer = record
          { equality = F[h]-isCoequalizer.equality , G[h′]-isCoequalizer.equality
          ; coequalize = map F[h]-isCoequalizer.coequalize G[h′]-isCoequalizer.coequalize
          ; universal = F[h]-isCoequalizer.universal , G[h′]-isCoequalizer.universal
          ; unique = map F[h]-isCoequalizer.unique G[h′]-isCoequalizer.unique
          }
        where
          module h,h′-isCoequalizer = IsCoequalizer h,h′-isCoequalizer
          h-isCoequalizer : IsCoequalizer 𝒜.U f g h
          h-isCoequalizer = record
              { equality = proj₁ h,h′-isCoequalizer.equality
              ; coequalize = λ { eq  proj₁ (h,h′-isCoequalizer.coequalize (eq , proj₂ h,h′-isCoequalizer.equality)) }
              ; universal = proj₁ h,h′-isCoequalizer.universal
              ; unique = λ { ≈h  proj₁ (h,h′-isCoequalizer.unique (≈h , ℬ.Equiv.sym ℬ.identityˡ)) }
              }
          h′-isCoequalizer : IsCoequalizer ℬ.U f′ g′ h′
          h′-isCoequalizer = record
              { equality = proj₂ h,h′-isCoequalizer.equality
              ; coequalize = λ { eq′  proj₂ (h,h′-isCoequalizer.coequalize (proj₁ h,h′-isCoequalizer.equality , eq′)) }
              ; universal = proj₂ h,h′-isCoequalizer.universal
              ; unique = λ { ≈h′  proj₂ (h,h′-isCoequalizer.unique (𝒜.Equiv.sym 𝒜.identityˡ , ≈h′)) }
              }

          module F[h]-isCoequalizer = IsCoequalizer (F-resp-coeq h-isCoequalizer)
          module G[h′]-isCoequalizer = IsCoequalizer (G-resp-coeq h′-isCoequalizer)
_×₁_
    : {𝒜  𝒞 𝒟 : FinitelyCocompleteCategory o  e}
     RightExactFunctor 𝒜 𝒞
     RightExactFunctor  𝒟
     RightExactFunctor (𝒜 × ) (𝒞 × 𝒟)
F ×₁ G = record
    { F = F.F  G.F
    ; isRightExact = IsRightExact-⁂ F.F G.F F.isRightExact G.isRightExact
    }
  where
    module F = RightExactFunctor F
    module G = RightExactFunctor G

FinitelyCocompletes-Products : {𝒞 𝒟 : FinitelyCocompleteCategory o  e}  Product FinitelyCocompletes 𝒞 𝒟
FinitelyCocompletes-Products {𝒞} {𝒟} = record
    { A×B = 𝒞 × 𝒟
    ; π₁ = rightexact πˡ (πˡ-RightExact 𝒞 𝒟)
    ; π₂ = rightexact πʳ (πʳ-RightExact 𝒞 𝒟)
    ; ⟨_,_⟩ = λ { (rightexact F isF) (rightexact G isG)  rightexact (F  G) (IsRightExact-※  F G isF isG) }
    ; project₁ = λ { {_} {rightexact F _} {rightexact G _}  Cats.project₁ {h = F} {i = G} }
    ; project₂ = λ { {_} {rightexact F _} {rightexact G _}  Cats.project₂ {h = F} {i = G} }
    ; unique = Cats.unique
    }
  where
    module 𝒞 = FinitelyCocompleteCategory 𝒞
    module 𝒟 = FinitelyCocompleteCategory 𝒟
    module Cats = BinaryProducts Products.Cats-has-all

FinitelyCocompletes-BinaryProducts : BinaryProducts FinitelyCocompletes
FinitelyCocompletes-BinaryProducts = record
    { product = FinitelyCocompletes-Products
    }

FinitelyCocompletes-Cartesian : Cartesian FinitelyCocompletes
FinitelyCocompletes-Cartesian = record 
    { terminal = record
        {  = One-FCC
        ; ⊤-is-terminal = _
        }
    ; products = FinitelyCocompletes-BinaryProducts
    }