aboutsummaryrefslogtreecommitdiff
path: root/Category/Instance/Properties/SymMonCat.agda
blob: fa15295a9bc7597e0dc5d80bad285370564118e4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
{-# OPTIONS --without-K --safe #-}
{-# OPTIONS --lossy-unification #-}

open import Level using (Level; suc; _⊔_)
module Category.Instance.Properties.SymMonCat {o  e : Level} where

import Categories.Category.Monoidal.Reasoning as ⊗-Reasoning
import Categories.Morphism.Reasoning as ⇒-Reasoning
import Categories.NaturalTransformation.NaturalIsomorphism.Monoidal.Symmetric as SMNI
import Categories.Functor.Monoidal.Symmetric {o} {o} {} {} {e} {e} as SMF

open import Category.Instance.SymMonCat {o} {} {e} using (SymMonCat)

open import Categories.Category using (Category; _[_≈_]; _[_∘_])
open import Categories.Object.Product.Core SymMonCat using (Product)
open import Categories.Object.Terminal SymMonCat using (Terminal)
open import Categories.Category.Instance.One using (One)
open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory)
open import Categories.Category.Cartesian SymMonCat using (Cartesian)
open import Categories.Category.Cartesian.Bundle using (CartesianCategory)
open import Categories.Functor.Monoidal.Properties using (idF-SymmetricMonoidal; ∘-SymmetricMonoidal)
open import Categories.Category.BinaryProducts SymMonCat using (BinaryProducts)
open import Categories.Functor.Monoidal.Construction.Product
  using ()
  renaming
    ( πˡ-SymmetricMonoidalFunctor to πˡ-SMF
    ; πʳ-SymmetricMonoidalFunctor to πʳ-SMF
    ; ※-SymmetricMonoidalFunctor to ※-SMF
    )
open import Categories.Category.Monoidal.Construction.Product using (Product-SymmetricMonoidalCategory)
open import Categories.Category.Product.Properties using () renaming (project₁ to p₁; project₂ to p₂; unique to u)
open import Data.Product.Base using (_,_; proj₁; proj₂)

open SMF.Lax using (SymmetricMonoidalFunctor)
open SMNI.Lax using (SymmetricMonoidalNaturalIsomorphism; id; isEquivalence)

module Cone
  {A B X : SymmetricMonoidalCategory o  e}
  {F : SymmetricMonoidalFunctor X A}
  {G : SymmetricMonoidalFunctor X B} where

  module A = SymmetricMonoidalCategory A
  module B = SymmetricMonoidalCategory B
  module X = SymmetricMonoidalCategory X
  module F = SymmetricMonoidalFunctor X A F
  module G = SymmetricMonoidalFunctor X B G

  A×B : SymmetricMonoidalCategory o  e
  A×B = (Product-SymmetricMonoidalCategory A B)

  πˡ : SymmetricMonoidalFunctor A×B A
  πˡ = πˡ-SMF {o} {} {e} {o} {} {e} {A} {B}

  πʳ : SymmetricMonoidalFunctor A×B B
  πʳ = πʳ-SMF {o} {} {e} {o} {} {e} {A} {B}

  module _ where
    open Category A.U
    open Equiv
    open ⇒-Reasoning A.U
    open ⊗-Reasoning A.monoidal
    project₁ : SymMonCat [ SymMonCat [ πˡ  ※-SMF F G ]  F ]
    project₁ = record
        { U = p₁ {o} {} {e} {o} {} {e} {o} {} {e} {A.U} {B.U} {X.U} {F.F} {G.F}
        ; F⇒G-isMonoidal = record
            { ε-compat = identityˡ  identityʳ
            ; ⊗-homo-compat = λ { {C} {D}  identityˡ  refl⟩∘⟨ sym A.⊗.identity }
            }
        }
    module _ (H : SymmetricMonoidalFunctor X A×B) (eq₁ : SymMonCat [ SymMonCat [ πˡ  H ]  F ]) where
      private
        module H = SymmetricMonoidalFunctor X A×B H
      open SymmetricMonoidalNaturalIsomorphism eq₁
      ε-compat₁ : ⇐.η X.unit A.∘ F.ε A.≈ H.ε .proj₁
      ε-compat₁ = refl⟩∘⟨ sym ε-compat  cancelˡ (iso.isoˡ X.unit)  identityʳ
      ⊗-homo-compat₁
          :  {C D}
           ⇐.η (X.⊗.₀ (C , D))  F.⊗-homo.η (C , D)
           H.⊗-homo.η (C , D) .proj₁  A.⊗.₁ (⇐.η C , ⇐.η D)
      ⊗-homo-compat₁ {C} {D} =
          insertʳ
              (sym ⊗-distrib-over-∘
               iso.isoʳ C ⟩⊗⟨ iso.isoʳ D
               A.⊗.identity)
           (pullʳ (sym ⊗-homo-compat)
             cancelˡ (iso.isoˡ (X.⊗.₀ (C , D)))
             identityʳ) ⟩∘⟨refl

  module _ where
    open Category B.U
    open Equiv
    open ⇒-Reasoning B.U
    open ⊗-Reasoning B.monoidal
    project₂ : SymMonCat [ SymMonCat [ πʳ  ※-SMF F G ]  G ]
    project₂ = record
        { U = p₂ {o} {} {e} {o} {} {e} {o} {} {e} {A.U} {B.U} {X.U} {F.F} {G.F}
        ; F⇒G-isMonoidal = record
            { ε-compat = identityˡ  identityʳ
            ; ⊗-homo-compat = λ { {C} {D}  identityˡ  refl⟩∘⟨ sym B.⊗.identity }
            }
        }
    module _ (H : SymmetricMonoidalFunctor X A×B) (eq₂ : SymMonCat [ SymMonCat [ πʳ  H ]  G ]) where
      private
        module H = SymmetricMonoidalFunctor X A×B H
      open SymmetricMonoidalNaturalIsomorphism eq₂
      ε-compat₂ : ⇐.η X.unit  G.ε  H.ε .proj₂
      ε-compat₂ = refl⟩∘⟨ sym ε-compat  cancelˡ (iso.isoˡ X.unit)  identityʳ
      ⊗-homo-compat₂
          :  {C D}
           ⇐.η (X.⊗.₀ (C , D))  G.⊗-homo.η (C , D)
           H.⊗-homo.η (C , D) .proj₂  B.⊗.₁ (⇐.η C , ⇐.η D)
      ⊗-homo-compat₂ {C} {D} =
          insertʳ
              (sym ⊗-distrib-over-∘
               iso.isoʳ C ⟩⊗⟨ iso.isoʳ D
               B.⊗.identity)
           (pullʳ (sym ⊗-homo-compat)
             cancelˡ (iso.isoˡ (X.⊗.₀ (C , D)))
             identityʳ) ⟩∘⟨refl

  unique
      : (H : SymmetricMonoidalFunctor X A×B)
       SymMonCat [ SymMonCat [ πˡ  H ]  F ]
       SymMonCat [ SymMonCat [ πʳ  H ]  G ]
       SymMonCat [ ※-SMF F G  H ]
  unique H eq₁ eq₂ = record
      { U = u {o} {} {e} {o} {} {e} {o} {} {e} {A.U} {B.U} {X.U} {F.F} {G.F} {H.F} eq₁.U eq₂.U
      ; F⇒G-isMonoidal = record
          { ε-compat = ε-compat₁ H eq₁ , ε-compat₂ H eq₂
          ; ⊗-homo-compat = ⊗-homo-compat₁ H eq₁ , ⊗-homo-compat₂ H eq₂
          }
      }
    where
      module H = SymmetricMonoidalFunctor X A×B H
      module eq₁ = SymmetricMonoidalNaturalIsomorphism eq₁
      module eq₂ = SymmetricMonoidalNaturalIsomorphism eq₂

prod-SymMonCat :  {A B}  Product A B
prod-SymMonCat {A} {B} = record
    { A×B = Product-SymmetricMonoidalCategory A B
    ; π₁ = πˡ-SMF {o} {} {e} {o} {} {e} {A} {B}
    ; π₂ = πʳ-SMF {o} {} {e} {o} {} {e} {A} {B}
    ; ⟨_,_⟩ = ※-SMF
    ; project₁ = λ { {X} {f} {g}  Cone.project₁ {A} {B} {X} {f} {g} }
    ; project₂ = λ { {X} {f} {g}  Cone.project₂ {A} {B} {X} {f} {g} }
    ; unique = λ { {X} {h} {f} {g} eq₁ eq₂  Cone.unique {A} {B} {X} {f} {g} h eq₁ eq₂ }
    }

SymMonCat-BinaryProducts : BinaryProducts
SymMonCat-BinaryProducts = record { product = prod-SymMonCat }

SymMonCat-Terminal : Terminal
SymMonCat-Terminal = record
    {  = record
        { U = One
        ; monoidal = _
        ; symmetric = _
        }
    ; ⊤-is-terminal = _
    }

SymMonCat-Cartesian : Cartesian
SymMonCat-Cartesian = record
    { terminal = SymMonCat-Terminal
    ; products = SymMonCat-BinaryProducts
    }