aboutsummaryrefslogtreecommitdiff
path: root/Cospan.agda
blob: f3bb5f57a035298d40393fbf680e51fae24b94b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
{-# OPTIONS --without-K --safe #-}

open import Categories.Category using (Category)
open import Category.Cocomplete.Bundle using (FinitelyCocompleteCategory)
open import Function using (flip)
open import Level using (_⊔_)

module Cospan {o  e} (𝒞 : FinitelyCocompleteCategory o  e) where

open FinitelyCocompleteCategory 𝒞

open import Categories.Diagram.Duality U using (Pushout⇒coPullback)
open import Categories.Diagram.Pushout U using (Pushout)
open import Categories.Diagram.Pushout.Properties U using (glue; swap; pushout-resp-≈)
open import Categories.Morphism U using (_≅_; module ≅)
open import Categories.Morphism.Duality U using (op-≅⇒≅)
open import Categories.Morphism.Reasoning U using
    ( switch-fromtoˡ
    ; glueTrianglesˡ
    ; id-comm
    ; id-comm-sym
    ; pullˡ
    ; pullʳ
    ; assoc²''
    ; assoc²'
    )

import Categories.Diagram.Pullback op as Pb using (up-to-iso)


private

  variable
    A B C D X Y Z : Obj
    f g h : A  B

record Cospan (A B : Obj) : Set (o  ) where

  field
    {N} : Obj
    f₁    : A  N
    f₂    : B  N

compose : Cospan A B  Cospan B C  Cospan A C
compose c₁ c₂ = record { f₁ = p.i₁  C₁.f₁ ; f₂ = p.i₂  C₂.f₂ }
  where
    module C₁ = Cospan c₁
    module C₂ = Cospan c₂
    module p = pushout C₁.f₂ C₂.f₁

identity : Cospan A A
identity = record { f₁ = id ; f₂ = id }

compose-3 : Cospan A B  Cospan B C  Cospan C D  Cospan A D
compose-3 c₁ c₂ c₃ = record { f₁ = P₃.i₁  P₁.i₁  C₁.f₁ ; f₂ = P₃.i₂  P₂.i₂  C₃.f₂ }
  where
    module C₁ = Cospan c₁
    module C₂ = Cospan c₂
    module C₃ = Cospan c₃
    module P₁ = pushout C₁.f₂ C₂.f₁
    module P₂ = pushout C₂.f₂ C₃.f₁
    module P₃ = pushout P₁.i₂ P₂.i₁

record Same (C C′ : Cospan A B) : Set (  e) where

  module C = Cospan C
  module C = Cospan C′

  field
    ≅N : C.N  C′.N

  open _≅_ ≅N public

  field
    from∘f₁≈f₁′ : from  C.f₁  C′.f₁
    from∘f₂≈f₂′ : from  C.f₂  C′.f₂

same-refl : {C : Cospan A B}  Same C C
same-refl = record
    { ≅N = ≅.refl
    ; from∘f₁≈f₁′ = identityˡ
    ; from∘f₂≈f₂′ = identityˡ
    }

same-sym : {C C′ : Cospan A B}  Same C C′  Same C′ C
same-sym C≅C′ = record
    { ≅N = ≅.sym ≅N
    ; from∘f₁≈f₁′ = Equiv.sym (switch-fromtoˡ ≅N from∘f₁≈f₁′)
    ; from∘f₂≈f₂′ = Equiv.sym (switch-fromtoˡ ≅N from∘f₂≈f₂′)
    }
  where
    open Same C≅C′

same-trans : {C C′ C″ : Cospan A B}  Same C C′  Same C′ C″  Same C C″
same-trans C≈C′ C′≈C″ = record
    { ≅N = ≅.trans C≈C′.≅N C′≈C″.≅N
    ; from∘f₁≈f₁′ = glueTrianglesˡ C′≈C″.from∘f₁≈f₁′ C≈C′.from∘f₁≈f₁′
    ; from∘f₂≈f₂′ = glueTrianglesˡ C′≈C″.from∘f₂≈f₂′ C≈C′.from∘f₂≈f₂′
    }
  where
    module C≈C′ = Same C≈C′
    module C′≈C″ = Same C′≈C″

glue-i₁ : (p : Pushout f g)  Pushout h (Pushout.i₁ p)  Pushout (h  f) g
glue-i₁ p = glue p

glue-i₂ : (p₁ : Pushout f g)  Pushout (Pushout.i₂ p₁) h  Pushout f (h  g)
glue-i₂ p₁ p₂ = swap (glue (swap p₁) (swap p₂))

up-to-iso : (p p′ : Pushout f g)  Pushout.Q p  Pushout.Q p′
up-to-iso p p′ = op-≅⇒≅ (Pb.up-to-iso (Pushout⇒coPullback p) (Pushout⇒coPullback p′))

id-unique : (p : Pushout f g)  (Pushout.universal p) (Pushout.commute p)  id
id-unique p = Equiv.sym (Pushout.unique p identityˡ identityˡ)

pushout-f-id : Pushout f id
pushout-f-id {_} {_} {f} = record
    { i₁ = id
    ; i₂ = f
    ; commute = id-comm-sym
    ; universal = λ {B} {h₁} {h₂} eq  h₁
    ; unique = λ {E} {h₁} {h₂} {eq} {j} j∘i₁≈h₁ j∘i₂≈h₂  Equiv.sym identityʳ  j∘i₁≈h₁
    ; universal∘i₁≈h₁ = λ {E} {h₁} {h₂} {eq}  identityʳ
    ; universal∘i₂≈h₂ = λ {E} {h₁} {h₂} {eq}  eq  identityʳ
    }
  where
    open HomReasoning

pushout-id-g : Pushout id g
pushout-id-g {_} {_} {g} = record
    { i₁ = g
    ; i₂ = id
    ; commute = id-comm
    ; universal = λ {B} {h₁} {h₂} eq  h₂
    ; unique = λ {E} {h₁} {h₂} {eq} {j} j∘i₁≈h₁ j∘i₂≈h₂  Equiv.sym identityʳ  j∘i₂≈h₂
    ; universal∘i₁≈h₁ = λ {E} {h₁} {h₂} {eq}  Equiv.sym eq  identityʳ
    ; universal∘i₂≈h₂ = λ {E} {h₁} {h₂} {eq}  identityʳ
    }
  where
    open HomReasoning

extend-i₁-iso
    : {f : A  B}
      {g : A  C}
      (p : Pushout f g)
      (B≅D : B  D)
     Pushout (_≅_.from B≅D  f) g
extend-i₁-iso {_} {_} {_} {_} {f} {g} p B≅D = record
    { i₁ = P.i₁  B≅D.to
    ; i₂ = P.i₂
    ; commute = begin
          (P.i₁  B≅D.to)  B≅D.from  f  ≈⟨ assoc²''           P.i₁  (B≅D.to  B≅D.from)  f  ≈⟨ refl⟩∘⟨ B≅D.isoˡ ⟩∘⟨refl           P.i₁  id  f                   ≈⟨ refl⟩∘⟨ identityˡ           P.i₁  f                        ≈⟨ P.commute           P.i₂  g                            ; universal = λ { eq  P.universal (assoc  eq) }
    ; unique = λ {_} {h₁} {_} {j} ≈₁ ≈₂ 
          let
            ≈₁′ = begin
                j  P.i₁                        ≈⟨ refl⟩∘⟨ identityʳ                 j  P.i₁  id                   ≈⟨ refl⟩∘⟨ refl⟩∘⟨ B≅D.isoˡ                 j  P.i₁  B≅D.to  B≅D.from    ≈⟨ assoc²'                 (j  P.i₁  B≅D.to)  B≅D.from  ≈⟨ ≈₁ ⟩∘⟨refl                 h₁  B≅D.from                             in P.unique ≈₁′ ≈₂
    ; universal∘i₁≈h₁ = λ {E} {h₁} {_} {eq} 
        begin
            P.universal (assoc  eq)  P.i₁  B≅D.to    ≈⟨ sym-assoc             (P.universal (assoc  eq)  P.i₁)  B≅D.to  ≈⟨ P.universal∘i₁≈h₁ ⟩∘⟨refl             (h₁  B≅D.from)  B≅D.to                    ≈⟨ assoc             h₁  B≅D.from  B≅D.to                      ≈⟨ refl⟩∘⟨ B≅D.isoʳ             h₁  id                                     ≈⟨ identityʳ             h₁                                              ; universal∘i₂≈h₂ = P.universal∘i₂≈h₂
    }
  where
    module P = Pushout p
    module B≅D = _≅_ B≅D
    open HomReasoning

extend-i₂-iso
    : {f : A  B}
      {g : A  C}
      (p : Pushout f g)
      (C≅D : C  D)
     Pushout f (_≅_.from C≅D  g)
extend-i₂-iso {_} {_} {_} {_} {f} {g} p C≅D = swap (extend-i₁-iso (swap p) C≅D)

compose-idˡ : {C : Cospan A B}  Same (compose C identity) C
compose-idˡ {_} {_} {C} = record
    { ≅N = ≅P
    ; from∘f₁≈f₁′ = begin
          ≅P.from  P.i₁  C.f₁     ≈⟨ assoc           (≅P.from  P.i₁)  C.f₁   ≈⟨ P.universal∘i₁≈h₁ ⟩∘⟨refl           id  C.f₁                 ≈⟨ identityˡ           C.f₁                          ; from∘f₂≈f₂′ = begin
          ≅P.from  P.i₂  id       ≈⟨ refl⟩∘⟨ identityʳ           ≅P.from  P.i₂            ≈⟨ P.universal∘i₂≈h₂           C.f₂                          }
  where
    open HomReasoning
    module C = Cospan C
    P = pushout C.f₂ id
    module P = Pushout P
    P′ = pushout-f-id {f = C.f₂}
    ≅P = up-to-iso P P′
    module P = _≅_ ≅P

compose-idʳ : {C : Cospan A B}  Same (compose identity C) C
compose-idʳ {_} {_} {C} = record
    { ≅N = ≅P
    ; from∘f₁≈f₁′ = begin
          ≅P.from  P.i₁  id       ≈⟨ refl⟩∘⟨ identityʳ           ≅P.from  P.i₁            ≈⟨ P.universal∘i₁≈h₁           C.f₁                          ; from∘f₂≈f₂′ = begin
          ≅P.from  P.i₂  C.f₂     ≈⟨ assoc           (≅P.from  P.i₂)  C.f₂   ≈⟨ P.universal∘i₂≈h₂ ⟩∘⟨refl           id  C.f₂                 ≈⟨ identityˡ           C.f₂                          }
  where
    open HomReasoning
    module C = Cospan C
    P = pushout id C.f₁
    module P = Pushout P
    P′ = pushout-id-g {g = C.f₁}
    ≅P = up-to-iso P P′
    module P = _≅_ ≅P

compose-id² : Same {A} (compose identity identity) identity
compose-id² = compose-idˡ

compose-3-right
    : {c₁ : Cospan A B}
      {c₂ : Cospan B C}
      {c₃ : Cospan C D}
     Same (compose c₁ (compose c₂ c₃)) (compose-3 c₁ c₂ c₃)
compose-3-right {_} {_} {_} {_} {c₁} {c₂} {c₃} = record
    { ≅N = up-to-iso P₄′ P₄
    ; from∘f₁≈f₁′ = sym-assoc  P₄′.universal∘i₁≈h₁ ⟩∘⟨refl  assoc
    ; from∘f₂≈f₂′ = sym-assoc  P₄′.universal∘i₂≈h₂ ⟩∘⟨refl
    }
  where
    open HomReasoning
    module C₁ = Cospan c₁
    module C₂ = Cospan c₂
    module C₃ = Cospan c₃
    P₁ = pushout C₁.f₂ C₂.f₁
    P₂ = pushout C₂.f₂ C₃.f₁
    module P₁ = Pushout P₁
    module P₂ = Pushout P₂
    P₃ = pushout P₁.i₂ P₂.i₁
    module P₃ = Pushout P₃
    P₄ = glue-i₂ P₁ P₃
    module P₄ = Pushout P₄
    P₄′ = pushout C₁.f₂ (P₂.i₁  C₂.f₁)
    module P₄ = Pushout P₄′

compose-3-left
    : {c₁ : Cospan A B}
      {c₂ : Cospan B C}
      {c₃ : Cospan C D}
     Same (compose (compose c₁ c₂) c₃) (compose-3 c₁ c₂ c₃)
compose-3-left {_} {_} {_} {_} {c₁} {c₂} {c₃} = record
    { ≅N = up-to-iso P₄′ P₄
    ; from∘f₁≈f₁′ = sym-assoc  P₄′.universal∘i₁≈h₁ ⟩∘⟨refl
    ; from∘f₂≈f₂′ = sym-assoc  P₄′.universal∘i₂≈h₂ ⟩∘⟨refl  assoc
    }
  where
    open HomReasoning
    module C₁ = Cospan c₁
    module C₂ = Cospan c₂
    module C₃ = Cospan c₃
    P₁ = pushout C₁.f₂ C₂.f₁
    P₂ = pushout C₂.f₂ C₃.f₁
    module P₁ = Pushout P₁
    module P₂ = Pushout P₂
    P₃ = pushout P₁.i₂ P₂.i₁
    module P₃ = Pushout P₃
    P₄ = glue-i₁ P₂ P₃
    module P₄ = Pushout P₄
    P₄′ = pushout (P₁.i₂  C₂.f₂) C₃.f₁
    module P₄ = Pushout P₄′

compose-assoc
    : {c₁ : Cospan A B}
      {c₂ : Cospan B C}
      {c₃ : Cospan C D}
     Same (compose c₁ (compose c₂ c₃)) (compose (compose c₁ c₂) c₃)
compose-assoc = same-trans compose-3-right (same-sym compose-3-left)

compose-sym-assoc
    : {c₁ : Cospan A B}
      {c₂ : Cospan B C}
      {c₃ : Cospan C D}
     Same (compose (compose c₁ c₂) c₃) (compose c₁ (compose c₂ c₃))
compose-sym-assoc = same-trans compose-3-left (same-sym compose-3-right)

compose-equiv
    : {c₂ c₂′ : Cospan B C}
      {c₁ c₁′ : Cospan A B}
     Same c₂ c₂′
     Same c₁ c₁′
     Same (compose c₁ c₂) (compose c₁′ c₂′)
compose-equiv {_} {_} {_} {c₂} {c₂′} {c₁} {c₁′} ≈C₂ ≈C₁ = record
    { ≅N = up-to-iso P P″
    ; from∘f₁≈f₁′ = begin
          ≅P.from  P.i₁  C₁.f₁      ≈⟨ assoc           (≅P.from  P.i₁)  C₁.f₁    ≈⟨ P.universal∘i₁≈h₁ ⟩∘⟨refl           (P′.i₁  ≈C₁.from)  C₁.f₁  ≈⟨ assoc           P′.i₁  ≈C₁.from  C₁.f₁    ≈⟨ refl⟩∘⟨ ≈C₁.from∘f₁≈f₁′           P′.i₁  C₁′.f₁                  ; from∘f₂≈f₂′ = begin
          ≅P.from  P.i₂  C₂.f₂      ≈⟨ assoc           (≅P.from  P.i₂)  C₂.f₂    ≈⟨ P.universal∘i₂≈h₂ ⟩∘⟨refl           (P′.i₂  ≈C₂.from)  C₂.f₂  ≈⟨ assoc           P′.i₂  ≈C₂.from  C₂.f₂    ≈⟨ refl⟩∘⟨ ≈C₂.from∘f₂≈f₂′           P′.i₂  C₂′.f₂                  }
  where
    module C₁ = Cospan c₁
    module C₁ = Cospan c₁′
    module C₂ = Cospan c₂
    module C₂ = Cospan c₂′
    P = pushout C₁.f₂ C₂.f₁
    P′ = pushout C₁′.f₂ C₂′.f₁
    module C₁ = Same ≈C₁
    module C₂ = Same ≈C₂
    P′′ : Pushout (≈C₁.to  C₁′.f₂) (≈C₂.to  C₂′.f₁)
    P′′ = extend-i₂-iso (extend-i₁-iso P′ (≅.sym ≈C₁.≅N)) (≅.sym ≈C₂.≅N)
    P″ : Pushout C₁.f₂ C₂.f₁
    P″ =
        pushout-resp-≈
            P′′
            (Equiv.sym (switch-fromtoˡ ≈C₁.≅N ≈C₁.from∘f₂≈f₂′))
            (Equiv.sym (switch-fromtoˡ ≈C₂.≅N ≈C₂.from∘f₁≈f₁′))
    module P = Pushout P
    module P = Pushout P′
    ≅P : P.Q  P′.Q
    ≅P = up-to-iso P P″
    module P = _≅_ ≅P
    open HomReasoning

Cospans : Category o (o  ) (  e)
Cospans = record
    { Obj = Obj
    ; _⇒_ = Cospan
    ; _≈_ = Same
    ; id = identity
    ; _∘_ = flip compose
    ; assoc = compose-assoc
    ; sym-assoc = compose-sym-assoc
    ; identityˡ = compose-idˡ
    ; identityʳ = compose-idʳ
    ; identity² = compose-id²
    ; equiv = record
        { refl = same-refl
        ; sym = same-sym
        ; trans = same-trans
        }
    ; ∘-resp-≈ = compose-equiv
    }