blob: 82c0d92ef14b6f9c6b268fe7f467718675f4a30d (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
|
{-# OPTIONS --without-K --safe #-}
module Data.Circuit.Merge where
open import Data.Nat.Base using (ℕ)
open import Data.Fin.Base using (Fin; pinch; punchIn; punchOut)
open import Data.Fin.Properties using (punchInᵢ≢i; punchIn-punchOut)
open import Data.Bool.Properties using (if-eta)
open import Data.Bool using (Bool; if_then_else_)
open import Data.Circuit.Value using (Value; join; join-comm; join-assoc)
open import Data.Subset.Functional
using
( Subset
; ⁅_⁆ ; ⊥ ; ⁅⁆∘ρ
; foldl ; foldl-cong₁ ; foldl-cong₂
; foldl-[] ; foldl-suc
; foldl-⊥ ; foldl-⁅⁆
; foldl-fusion
)
open import Data.Vector as V using (Vector; head; tail; removeAt)
open import Data.Fin.Permutation
using
( Permutation
; Permutation′
; _⟨$⟩ˡ_ ; _⟨$⟩ʳ_
; inverseˡ ; inverseʳ
; id
; flip
; insert ; remove
; punchIn-permute
)
open import Data.Product using (Σ-syntax; _,_)
open import Data.Fin.Preimage using (preimage; preimage-cong₁; preimage-cong₂)
open import Function.Base using (∣_⟩-_; _∘_)
open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_)
open Value using (U)
open ℕ
open Fin
open Bool
_when_ : Value → Bool → Value
x when b = if b then x else U
opaque
merge-with : {A : ℕ} → Value → Vector Value A → Subset A → Value
merge-with e v = foldl (∣ join ⟩- v) e
merge-with-cong : {A : ℕ} {v₁ v₂ : Vector Value A} (e : Value) → v₁ ≗ v₂ → merge-with e v₁ ≗ merge-with e v₂
merge-with-cong e v₁≗v₂ = foldl-cong₁ (λ x → ≡.cong (join x) ∘ v₁≗v₂) e
merge-with-cong₂ : {A : ℕ} (e : Value) (v : Vector Value A) {S₁ S₂ : Subset A} → S₁ ≗ S₂ → merge-with e v S₁ ≡ merge-with e v S₂
merge-with-cong₂ e v = foldl-cong₂ (∣ join ⟩- v) e
merge-with-⊥ : {A : ℕ} (e : Value) (v : Vector Value A) → merge-with e v ⊥ ≡ e
merge-with-⊥ e v = foldl-⊥ (∣ join ⟩- v) e
merge-with-[] : (e : Value) (v : Vector Value 0) (S : Subset 0) → merge-with e v S ≡ e
merge-with-[] e v = foldl-[] (∣ join ⟩- v) e
merge-with-suc
: {A : ℕ} (e : Value) (v : Vector Value (suc A)) (S : Subset (suc A))
→ merge-with e v S
≡ merge-with (if head S then join e (head v) else e) (tail v) (tail S)
merge-with-suc e v = foldl-suc (∣ join ⟩- v) e
merge-with-join
: {A : ℕ}
(x y : Value)
(v : Vector Value A)
→ merge-with (join x y) v ≗ join x ∘ merge-with y v
merge-with-join {A} x y v S = ≡.sym (foldl-fusion (join x) fuse y S)
where
fuse : (acc : Value) (k : Fin A) → join x (join acc (v k)) ≡ join (join x acc) (v k)
fuse acc k = ≡.sym (join-assoc x acc (v k))
merge-with-⁅⁆ : {A : ℕ} (e : Value) (v : Vector Value A) (x : Fin A) → merge-with e v ⁅ x ⁆ ≡ join e (v x)
merge-with-⁅⁆ e v = foldl-⁅⁆ (∣ join ⟩- v) e
merge-with-U : {A : ℕ} (e : Value) (S : Subset A) → merge-with e (λ _ → U) S ≡ e
merge-with-U {zero} e S = merge-with-[] e (λ _ → U) S
merge-with-U {suc A} e S = begin
merge-with e (λ _ → U) S ≡⟨ merge-with-suc e (λ _ → U) S ⟩
merge-with
(if head S then join e U else e)
(tail (λ _ → U)) (tail S) ≡⟨ ≡.cong (λ h → merge-with (if head S then h else e) _ _) (join-comm e U) ⟩
merge-with
(if head S then e else e)
(tail (λ _ → U)) (tail S) ≡⟨ ≡.cong (λ h → merge-with h (λ _ → U) (tail S)) (if-eta (head S)) ⟩
merge-with e (tail (λ _ → U)) (tail S) ≡⟨⟩
merge-with e (λ _ → U) (tail S) ≡⟨ merge-with-U e (tail S) ⟩
e ∎
where
open ≡.≡-Reasoning
merge : {A : ℕ} → Vector Value A → Subset A → Value
merge v = merge-with U v
merge-cong₁ : {A : ℕ} {v₁ v₂ : Vector Value A} → v₁ ≗ v₂ → merge v₁ ≗ merge v₂
merge-cong₁ = merge-with-cong U
merge-cong₂ : {A : ℕ} (v : Vector Value A) {S₁ S₂ : Subset A} → S₁ ≗ S₂ → merge v S₁ ≡ merge v S₂
merge-cong₂ = merge-with-cong₂ U
merge-⊥ : {A : ℕ} (v : Vector Value A) → merge v ⊥ ≡ U
merge-⊥ = merge-with-⊥ U
merge-[] : (v : Vector Value 0) (S : Subset 0) → merge v S ≡ U
merge-[] = merge-with-[] U
merge-[]₂ : {v₁ v₂ : Vector Value 0} {S₁ S₂ : Subset 0} → merge v₁ S₁ ≡ merge v₂ S₂
merge-[]₂ {v₁} {v₂} {S₁} {S₂} = ≡.trans (merge-[] v₁ S₁) (≡.sym (merge-[] v₂ S₂))
merge-⁅⁆ : {A : ℕ} (v : Vector Value A) (x : Fin A) → merge v ⁅ x ⁆ ≡ v x
merge-⁅⁆ = merge-with-⁅⁆ U
join-merge : {A : ℕ} (e : Value) (v : Vector Value A) (S : Subset A) → join e (merge v S) ≡ merge-with e v S
join-merge e v S = ≡.sym (≡.trans (≡.cong (λ h → merge-with h v S) (join-comm U e)) (merge-with-join e U v S))
merge-suc
: {A : ℕ} (v : Vector Value (suc A)) (S : Subset (suc A))
→ merge v S
≡ merge-with (head v when head S) (tail v) (tail S)
merge-suc = merge-with-suc U
insert-f0-0
: {A B : ℕ}
(f : Fin (suc A) → Fin (suc B))
→ Σ[ ρ ∈ Permutation′ (suc B) ] (ρ ⟨$⟩ʳ (f zero) ≡ zero)
insert-f0-0 f = insert (f zero) zero id , help
where
open import Data.Fin using (_≟_)
open import Relation.Nullary.Decidable using (yes; no)
help : insert (f zero) zero id ⟨$⟩ʳ f zero ≡ zero
help with f zero ≟ f zero
... | yes _ = ≡.refl
... | no f0≢f0 with () ← f0≢f0 ≡.refl
merge-removeAt
: {A : ℕ}
(k : Fin (suc A))
(v : Vector Value (suc A))
(S : Subset (suc A))
→ merge v S ≡ join (v k when S k) (merge (removeAt v k) (removeAt S k))
merge-removeAt {A} zero v S = begin
merge-with U v S ≡⟨ merge-suc v S ⟩
merge-with (head v when head S) (tail v) (tail S) ≡⟨ join-merge (head v when head S) (tail v) (tail S) ⟨
join (head v when head S) (merge-with U (tail v) (tail S)) ∎
where
open ≡.≡-Reasoning
merge-removeAt {suc A} (suc k) v S = begin
merge-with U v S ≡⟨ merge-suc v S ⟩
merge-with v0? (tail v) (tail S) ≡⟨ join-merge _ (tail v) (tail S) ⟨
join v0? (merge (tail v) (tail S)) ≡⟨ ≡.cong (join v0?) (merge-removeAt k (tail v) (tail S)) ⟩
join v0? (join vk? (merge (tail v-) (tail S-))) ≡⟨ join-assoc (head v when head S) _ _ ⟨
join (join v0? vk?) (merge (tail v-) (tail S-)) ≡⟨ ≡.cong (λ h → join h (merge (tail v-) (tail S-))) (join-comm (head v- when head S-) _) ⟩
join (join vk? v0?) (merge (tail v-) (tail S-)) ≡⟨ join-assoc (tail v k when tail S k) _ _ ⟩
join vk? (join v0? (merge (tail v-) (tail S-))) ≡⟨ ≡.cong (join vk?) (join-merge _ (tail v-) (tail S-)) ⟩
join vk? (merge-with v0? (tail v-) (tail S-)) ≡⟨ ≡.cong (join vk?) (merge-suc v- S-) ⟨
join vk? (merge v- S-) ∎
where
v0? vk? : Value
v0? = head v when head S
vk? = tail v k when tail S k
v- : Vector Value (suc A)
v- = removeAt v (suc k)
S- : Subset (suc A)
S- = removeAt S (suc k)
open ≡.≡-Reasoning
import Function.Structures as FunctionStructures
open module FStruct {A B : Set} = FunctionStructures {_} {_} {_} {_} {A} _≡_ {B} _≡_ using (IsInverse)
open IsInverse using () renaming (inverseˡ to invˡ; inverseʳ to invʳ)
merge-preimage-ρ
: {A B : ℕ}
→ (ρ : Permutation A B)
→ (v : Vector Value A)
(S : Subset B)
→ merge v (preimage (ρ ⟨$⟩ʳ_) S) ≡ merge (v ∘ (ρ ⟨$⟩ˡ_)) S
merge-preimage-ρ {zero} {zero} ρ v S = merge-[]₂
merge-preimage-ρ {zero} {suc B} ρ v S with () ← ρ ⟨$⟩ˡ zero
merge-preimage-ρ {suc A} {zero} ρ v S with () ← ρ ⟨$⟩ʳ zero
merge-preimage-ρ {suc A} {suc B} ρ v S = begin
merge v (preimage ρʳ S) ≡⟨ merge-removeAt (head ρˡ) v (preimage ρʳ S) ⟩
join
(head (v ∘ ρˡ) when S (ρʳ (ρˡ zero)))
(merge v- [preimageρʳS]-) ≡⟨ ≡.cong (λ h → join h (merge v- [preimageρʳS]-)) ≡vρˡ0? ⟩
join vρˡ0? (merge v- [preimageρʳS]-) ≡⟨ ≡.cong (join vρˡ0?) (merge-cong₂ v- preimage-) ⟩
join vρˡ0? (merge v- (preimage ρʳ- S-)) ≡⟨ ≡.cong (join vρˡ0?) (merge-preimage-ρ ρ- v- S-) ⟩
join vρˡ0? (merge (v- ∘ ρˡ-) S-) ≡⟨ ≡.cong (join vρˡ0?) (merge-cong₁ v∘ρˡ- S-) ⟩
join vρˡ0? (merge (tail (v ∘ ρˡ)) S-) ≡⟨ join-merge vρˡ0? (tail (v ∘ ρˡ)) S- ⟩
merge-with vρˡ0? (tail (v ∘ ρˡ)) S- ≡⟨ merge-suc (v ∘ ρˡ) S ⟨
merge (v ∘ ρˡ) S ∎
where
ρˡ : Fin (suc B) → Fin (suc A)
ρˡ = ρ ⟨$⟩ˡ_
ρʳ : Fin (suc A) → Fin (suc B)
ρʳ = ρ ⟨$⟩ʳ_
ρ- : Permutation A B
ρ- = remove (head ρˡ) ρ
ρˡ- : Fin B → Fin A
ρˡ- = ρ- ⟨$⟩ˡ_
ρʳ- : Fin A → Fin B
ρʳ- = ρ- ⟨$⟩ʳ_
v- : Vector Value A
v- = removeAt v (head ρˡ)
[preimageρʳS]- : Subset A
[preimageρʳS]- = removeAt (preimage ρʳ S) (head ρˡ)
S- : Subset B
S- = tail S
vρˡ0? : Value
vρˡ0? = head (v ∘ ρˡ) when head S
open ≡.≡-Reasoning
≡vρˡ0? : head (v ∘ ρˡ) when S (ρʳ (head ρˡ)) ≡ head (v ∘ ρˡ) when head S
≡vρˡ0? = ≡.cong ((head (v ∘ ρˡ) when_) ∘ S) (inverseʳ ρ)
v∘ρˡ- : v- ∘ ρˡ- ≗ tail (v ∘ ρˡ)
v∘ρˡ- x = begin
v- (ρˡ- x) ≡⟨⟩
v (punchIn (head ρˡ) (punchOut {A} {head ρˡ} _)) ≡⟨ ≡.cong v (punchIn-punchOut _) ⟩
v (ρˡ (punchIn (ρʳ (ρˡ zero)) x)) ≡⟨ ≡.cong (λ h → v (ρˡ (punchIn h x))) (inverseʳ ρ) ⟩
v (ρˡ (punchIn zero x)) ≡⟨⟩
v (ρˡ (suc x)) ≡⟨⟩
tail (v ∘ ρˡ) x ∎
preimage- : [preimageρʳS]- ≗ preimage ρʳ- S-
preimage- x = begin
[preimageρʳS]- x ≡⟨⟩
removeAt (preimage ρʳ S) (head ρˡ) x ≡⟨⟩
S (ρʳ (punchIn (head ρˡ) x)) ≡⟨ ≡.cong S (punchIn-permute ρ (head ρˡ) x) ⟩
S (punchIn (ρʳ (head ρˡ)) (ρʳ- x)) ≡⟨⟩
S (punchIn (ρʳ (ρˡ zero)) (ρʳ- x)) ≡⟨ ≡.cong (λ h → S (punchIn h (ρʳ- x))) (inverseʳ ρ) ⟩
S (punchIn zero (ρʳ- x)) ≡⟨⟩
S (suc (ρʳ- x)) ≡⟨⟩
preimage ρʳ- S- x ∎
push-with : {A B : ℕ} → (e : Value) → Vector Value A → (Fin A → Fin B) → Vector Value B
push-with e v f = merge-with e v ∘ preimage f ∘ ⁅_⁆
push : {A B : ℕ} → Vector Value A → (Fin A → Fin B) → Vector Value B
push = push-with U
mutual
merge-preimage
: {A B : ℕ}
(f : Fin A → Fin B)
→ (v : Vector Value A)
(S : Subset B)
→ merge v (preimage f S) ≡ merge (push v f) S
merge-preimage {zero} {zero} f v S = merge-[]₂
merge-preimage {zero} {suc B} f v S = begin
merge v (preimage f S) ≡⟨ merge-[] v (preimage f S) ⟩
U ≡⟨ merge-with-U U S ⟨
merge (λ _ → U) S ≡⟨ merge-cong₁ (λ x → ≡.sym (merge-[] v (⁅ x ⁆ ∘ f))) S ⟩
merge (push v f) S ∎
where
open ≡.≡-Reasoning
merge-preimage {suc A} {zero} f v S with () ← f zero
merge-preimage {suc A} {suc B} f v S with insert-f0-0 f
... | ρ , ρf0≡0 = begin
merge v (preimage f S) ≡⟨ merge-cong₂ v (preimage-cong₁ (λ x → inverseˡ ρ {f x}) S) ⟨
merge v (preimage (ρˡ ∘ ρʳ ∘ f) S) ≡⟨⟩
merge v (preimage (ρʳ ∘ f) (preimage ρˡ S)) ≡⟨ merge-preimage-f0≡0 (ρʳ ∘ f) ρf0≡0 v (preimage ρˡ S) ⟩
merge (merge v ∘ preimage (ρʳ ∘ f) ∘ ⁅_⁆) (preimage ρˡ S) ≡⟨ merge-preimage-ρ (flip ρ) (merge v ∘ preimage (ρʳ ∘ f) ∘ ⁅_⁆) S ⟩
merge (merge v ∘ preimage (ρʳ ∘ f) ∘ ⁅_⁆ ∘ ρʳ) S ≡⟨ merge-cong₁ (merge-cong₂ v ∘ preimage-cong₂ (ρʳ ∘ f) ∘ ⁅⁆∘ρ ρ) S ⟩
merge (merge v ∘ preimage (ρʳ ∘ f) ∘ preimage ρˡ ∘ ⁅_⁆) S ≡⟨⟩
merge (merge v ∘ preimage (ρˡ ∘ ρʳ ∘ f) ∘ ⁅_⁆) S ≡⟨ merge-cong₁ (merge-cong₂ v ∘ preimage-cong₁ (λ y → inverseˡ ρ {f y}) ∘ ⁅_⁆) S ⟩
merge (merge v ∘ preimage f ∘ ⁅_⁆) S ∎
where
open ≡.≡-Reasoning
ρʳ ρˡ : Fin (ℕ.suc B) → Fin (ℕ.suc B)
ρʳ = ρ ⟨$⟩ʳ_
ρˡ = ρ ⟨$⟩ˡ_
merge-preimage-f0≡0
: {A B : ℕ}
(f : Fin (ℕ.suc A) → Fin (ℕ.suc B))
→ f Fin.zero ≡ Fin.zero
→ (v : Vector Value (ℕ.suc A))
(S : Subset (ℕ.suc B))
→ merge v (preimage f S) ≡ merge (merge v ∘ preimage f ∘ ⁅_⁆) S
merge-preimage-f0≡0 {A} {B} f f0≡0 v S
using S0 , S- ← head S , tail S
using v0 , v- ← head v , tail v
using _ , f- ← head f , tail f
= begin
merge v f⁻¹[S] ≡⟨ merge-suc v f⁻¹[S] ⟩
merge-with v0? v- f⁻¹[S]- ≡⟨ join-merge v0? v- f⁻¹[S]- ⟨
join v0? (merge v- f⁻¹[S]-) ≡⟨ ≡.cong (join v0?) (merge-preimage f- v- S) ⟩
join v0? (merge f[v-] S) ≡⟨ join-merge v0? f[v-] S ⟩
merge-with v0? f[v-] S ≡⟨ merge-with-suc v0? f[v-] S ⟩
merge-with v0?+[f[v-]0?] f[v-]- S- ≡⟨ ≡.cong (λ h → merge-with h f[v-]- S-) ≡f[v]0 ⟩
merge-with f[v]0? f[v-]- S- ≡⟨ merge-with-cong f[v]0? ≡f[v]- S- ⟩
merge-with f[v]0? f[v]- S- ≡⟨ merge-suc f[v] S ⟨
merge f[v] S ∎
where
f⁻¹[S] : Subset (suc A)
f⁻¹[S] = preimage f S
f⁻¹[S]- : Subset A
f⁻¹[S]- = tail f⁻¹[S]
f⁻¹[S]0 : Bool
f⁻¹[S]0 = head f⁻¹[S]
f[v] : Vector Value (suc B)
f[v] = push v f
f[v]- : Vector Value B
f[v]- = tail f[v]
f[v]0 : Value
f[v]0 = head f[v]
f[v-] : Vector Value (suc B)
f[v-] = push v- f-
f[v-]- : Vector Value B
f[v-]- = tail f[v-]
f[v-]0 : Value
f[v-]0 = head f[v-]
f⁻¹⁅0⁆ : Subset (suc A)
f⁻¹⁅0⁆ = preimage f ⁅ zero ⁆
f⁻¹⁅0⁆- : Subset A
f⁻¹⁅0⁆- = tail f⁻¹⁅0⁆
v0? v0?+[f[v-]0?] f[v]0? : Value
v0? = v0 when f⁻¹[S]0
v0?+[f[v-]0?] = (if S0 then join v0? f[v-]0 else v0?)
f[v]0? = f[v]0 when S0
open ≡.≡-Reasoning
≡f[v]0 : v0?+[f[v-]0?] ≡ f[v]0?
≡f[v]0 rewrite f0≡0 with S0
... | true = begin
join v0 (merge v- f⁻¹⁅0⁆-) ≡⟨ join-merge v0 v- (tail (preimage f ⁅ zero ⁆)) ⟩
merge-with v0 v- f⁻¹⁅0⁆- ≡⟨ ≡.cong (λ h → merge-with (v0 when ⁅ zero ⁆ h) v- f⁻¹⁅0⁆-) f0≡0 ⟨
merge-with v0?′ v- f⁻¹⁅0⁆- ≡⟨ merge-suc v (preimage f ⁅ zero ⁆) ⟨
merge v f⁻¹⁅0⁆ ∎
where
v0?′ : Value
v0?′ = v0 when head f⁻¹⁅0⁆
... | false = ≡.refl
≡f[v]- : f[v-]- ≗ f[v]-
≡f[v]- x = begin
push v- f- (suc x) ≡⟨ ≡.cong (λ h → merge-with (v0 when ⁅ suc x ⁆ h) v- (preimage f- ⁅ suc x ⁆)) f0≡0 ⟨
push-with v0?′ v- f- (suc x) ≡⟨ merge-suc v (preimage f ⁅ suc x ⁆) ⟨
push v f (suc x) ∎
where
v0?′ : Value
v0?′ = v0 when head (preimage f ⁅ suc x ⁆)
|