aboutsummaryrefslogtreecommitdiff
path: root/Data/Circuit/Merge.agda
blob: b399cb431228a53c77ca00269971326763aab7af (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
{-# OPTIONS --without-K --safe #-}

module Data.Circuit.Merge where

open import Data.Nat.Base using ()
open import Data.Fin.Base using (Fin; pinch; punchIn; punchOut)
open import Data.Fin.Properties using (punchInᵢ≢i; punchIn-punchOut)
open import Data.Bool.Properties using (if-eta)
open import Data.Bool using (Bool; if_then_else_)
open import Data.Circuit.Value using (Value; join; join-comm; join-assoc)
open import Data.Subset.Functional
  using
      ( Subset
      ; ⁅_⁆ ;  ; ⁅⁆∘ρ
      ; foldl ; foldl-cong₁ ; foldl-cong₂
      ; foldl-[] ; foldl-suc
      ; foldl-⊥ ; foldl-⁅⁆
      ; foldl-fusion
      )
open import Data.Vector as V using (Vector; head; tail; removeAt)
open import Data.Fin.Permutation
  using
    ( Permutation′
    ; _⟨$⟩ˡ_ ; _⟨$⟩ʳ_
    ; inverseˡ ; inverseʳ
    ; id
    ; flip
    ; insert ; remove
    ; punchIn-permute
    )
open import Data.Product using (Σ-syntax; _,_)
open import Data.Fin.Preimage using (preimage; preimage-cong₁; preimage-cong₂)
open import Function.Base using (∣_⟩-_; _∘_)
open import Relation.Binary.PropositionalEquality as  using (_≡_; _≗_)

open Value using (U)
open open Fin
open Bool

_when_ : Value  Bool  Value
x when b = if b then x else U

opaque
  merge-with : {A : }  Value  Vector Value A  Subset A  Value
  merge-with e v = foldl ( join ⟩- v) e

  merge-with-cong : {A : } {v₁ v₂ : Vector Value A} (e : Value)  v₁  v₂  merge-with e v₁  merge-with e v₂
  merge-with-cong e v₁≗v₂ = foldl-cong₁ (λ x  ≡.cong (join x)  v₁≗v₂) e

  merge-with-cong₂ : {A : } (e : Value) (v : Vector Value A) {S₁ S₂ : Subset A}  S₁  S₂  merge-with e v S₁  merge-with e v S₂
  merge-with-cong₂ e v = foldl-cong₂ ( join ⟩- v) e

  merge-with-⊥ : {A : } (e : Value) (v : Vector Value A)  merge-with e v   e
  merge-with-⊥ e v = foldl-⊥ ( join ⟩- v) e

  merge-with-[] : (e : Value) (v : Vector Value 0) (S : Subset 0)  merge-with e v S  e
  merge-with-[] e v = foldl-[] ( join ⟩- v) e

  merge-with-suc
      : {A : } (e : Value) (v : Vector Value (suc A)) (S : Subset (suc A))
       merge-with e v S
       merge-with (if head S then join e (head v) else e) (tail v) (tail S)
  merge-with-suc e v = foldl-suc ( join ⟩- v) e

  merge-with-join
      : {A : }
        (x y : Value)
        (v : Vector Value A)
       merge-with (join x y) v  join x  merge-with y v
  merge-with-join {A} x y v S = ≡.sym (foldl-fusion (join x) fuse y S)
    where
      fuse : (acc : Value) (k : Fin A)  join x (join acc (v k))  join (join x acc) (v k)
      fuse acc k = ≡.sym (join-assoc x acc (v k))

  merge-with-⁅⁆ : {A : } (e : Value) (v : Vector Value A) (x : Fin A)  merge-with e v  x   join e (v x)
  merge-with-⁅⁆ e v = foldl-⁅⁆ ( join ⟩- v) e

merge-with-U : {A : } (e : Value) (S : Subset A)  merge-with e (λ _  U) S  e
merge-with-U {zero} e S = merge-with-[] e (λ _  U) S
merge-with-U {suc A} e S = begin
    merge-with e (λ _  U) S                ≡⟨ merge-with-suc e (λ _  U) S     merge-with
        (if head S then join e U else e)
        (tail (λ _  U)) (tail S)           ≡⟨ ≡.cong (λ h  merge-with (if head S then h else e) _ _) (join-comm e U)     merge-with
        (if head S then e else e)
        (tail (λ _  U)) (tail S)           ≡⟨ ≡.cong (λ h  merge-with h (λ _  U) (tail S)) (if-eta (head S))     merge-with e (tail (λ _  U)) (tail S)  ≡⟨⟩
    merge-with e (λ _  U) (tail S)         ≡⟨ merge-with-U e (tail S)     e                                         where
    open ≡.≡-Reasoning

merge : {A : }  Vector Value A  Subset A  Value
merge v = merge-with U v

merge-cong₁ : {A : } {v₁ v₂ : Vector Value A}  v₁  v₂  merge v₁  merge v₂
merge-cong₁ = merge-with-cong U

merge-cong₂ : {A : } (v : Vector Value A) {S₁ S₂ : Subset A}  S₁  S₂  merge v S₁  merge v S₂
merge-cong₂ = merge-with-cong₂ U

merge-⊥ : {A : } (v : Vector Value A)  merge-with U v   U
merge-⊥ = merge-with-⊥ U

merge-[] : (v : Vector Value 0) (S : Subset 0)  merge v S  U
merge-[] = merge-with-[] U

merge-[]₂ : {v₁ v₂ : Vector Value 0} {S₁ S₂ : Subset 0}  merge v₁ S₁  merge v₂ S₂
merge-[]₂ {v₁} {v₂} {S₁} {S₂} = ≡.trans (merge-[] v₁ S₁) (≡.sym (merge-[] v₂ S₂))

merge-⁅⁆ : {A : } (v : Vector Value A) (x : Fin A)  merge v  x   v x
merge-⁅⁆ = merge-with-⁅⁆ U

join-merge : {A : } (e : Value) (v : Vector Value A) (S : Subset A)  join e (merge v S)  merge-with e v S
join-merge e v S = ≡.sym (≡.trans (≡.cong (λ h  merge-with h v S) (join-comm U e)) (merge-with-join e U v S))

merge-suc
    : {A : } (v : Vector Value (suc A)) (S : Subset (suc A))
     merge v S
     merge-with (head v when head S) (tail v) (tail S)
merge-suc = merge-with-suc U

insert-f0-0
    : {A B : }
      (f : Fin (suc A)  Fin (suc B))
     Σ[ ρ  Permutation′ (suc B) ] (ρ ⟨$⟩ʳ (f zero)  zero)
insert-f0-0 f = insert (f zero) zero id , help
  where
    open import Data.Fin using (_≟_)
    open import Relation.Nullary.Decidable using (yes; no)
    help : insert (f zero) zero id ⟨$⟩ʳ f zero  zero
    help with f zero  f zero
    ... | yes _ = ≡.refl
    ... | no f0≢f0 with ()  f0≢f0 ≡.refl

merge-removeAt
    : {A : }
      (k : Fin (suc A))
      (v : Vector Value (suc A))
      (S : Subset (suc A))
     merge v S  join (v k when S k) (merge (removeAt v k) (removeAt S k))
merge-removeAt {A} zero v S = begin
    merge-with U v S                                            ≡⟨ merge-suc v S     merge-with (head v when head S) (tail v) (tail S)           ≡⟨ join-merge (head v when head S) (tail v) (tail S)     join (head v when head S) (merge-with U (tail v) (tail S))    where
    open ≡.≡-Reasoning
merge-removeAt {suc A} (suc k) v S = begin
    merge-with U v S                                  ≡⟨ merge-suc v S     merge-with v0? (tail v) (tail S)                  ≡⟨ join-merge _ (tail v) (tail S)     join v0? (merge (tail v) (tail S))                ≡⟨ ≡.cong (join v0?) (merge-removeAt k (tail v) (tail S))     join v0? (join vk? (merge (tail v-) (tail S-)))   ≡⟨ join-assoc (head v when head S) _ _     join (join v0? vk?) (merge (tail v-) (tail S-))   ≡⟨ ≡.cong (λ h  join h (merge (tail v-) (tail S-))) (join-comm (head v- when head S-) _)     join (join vk? v0?) (merge (tail v-) (tail S-))   ≡⟨ join-assoc (tail v k when tail S k) _ _     join vk? (join v0? (merge (tail v-) (tail S-)))   ≡⟨ ≡.cong (join vk?) (join-merge _ (tail v-) (tail S-))     join vk? (merge-with v0? (tail v-) (tail S-))     ≡⟨ ≡.cong (join vk?) (merge-suc v- S-)     join vk? (merge v- S-)                              where
    v0? vk? : Value
    v0? = head v when head S
    vk? = tail v k when tail S k
    v- : Vector Value (suc A)
    v- = removeAt v (suc k)
    S- : Subset (suc A)
    S- = removeAt S (suc k)
    open ≡.≡-Reasoning

import Function.Structures as FunctionStructures
open module FStruct {A B : Set} = FunctionStructures {_} {_} {_} {_} {A} _≡_ {B} _≡_ using (IsInverse)
open IsInverse using () renaming (inverseˡ to invˡ; inverseʳ to invʳ)

merge-preimage-ρ
    : {A : }
     (ρ : Permutation′ A)
     (v : Vector Value A)
      (S : Subset A)
     merge v (preimage (ρ ⟨$⟩ʳ_) S)  merge (v  (ρ ⟨$⟩ˡ_)) S
merge-preimage-ρ {zero} ρ v S = merge-[]₂
merge-preimage-ρ {suc A} ρ v S = begin
    merge v (preimage ρʳ S)                   ≡⟨ merge-removeAt (head ρˡ) v (preimage ρʳ S)     join
        (head (v  ρˡ) when S (ρʳ (ρˡ zero)))
        (merge v- [preimageρʳS]-)             ≡⟨ ≡.cong (λ h  join h (merge v- [preimageρʳS]-)) ≡vρˡ0?     join vρˡ0? (merge v- [preimageρʳS]-)      ≡⟨ ≡.cong (join vρˡ0?) (merge-cong₂ v- preimage-)     join vρˡ0? (merge v- (preimage ρʳ- S-))   ≡⟨ ≡.cong (join vρˡ0?) (merge-preimage-ρ ρ- v- S-)     join vρˡ0? (merge (v-  ρˡ-) S-)          ≡⟨ ≡.cong (join vρˡ0?) (merge-cong₁ v∘ρˡ- S-)     join vρˡ0? (merge (tail (v  ρˡ)) S-)     ≡⟨ join-merge vρˡ0? (tail (v  ρˡ)) S-     merge-with vρˡ0? (tail (v  ρˡ)) S-       ≡⟨ merge-suc (v  ρˡ) S     merge (v  ρˡ) S                            where
    ρˡ ρʳ : Fin (suc A)  Fin (suc A)
    ρˡ = ρ ⟨$⟩ˡ_
    ρʳ = ρ ⟨$⟩ʳ_
    ρ- : Permutation′ A
    ρ- = remove (head ρˡ) ρ
    ρˡ- ρʳ- : Fin A  Fin A
    ρˡ- = ρ- ⟨$⟩ˡ_
    ρʳ- = ρ- ⟨$⟩ʳ_
    v- : Vector Value A
    v- = removeAt v (head ρˡ)
    [preimageρʳS]- : Subset A
    [preimageρʳS]- = removeAt (preimage ρʳ S) (head ρˡ)
    S- : Subset A
    S- = tail S
    vρˡ0? : Value
    vρˡ0? = head (v  ρˡ) when head S
    open ≡.≡-Reasoning
    ≡vρˡ0?  : head (v  ρˡ) when S (ρʳ (head ρˡ))  head (v  ρˡ) when head S
    ≡vρˡ0? = ≡.cong ((head (v  ρˡ) when_)  S) (inverseʳ ρ)
    v∘ρˡ- : v-  ρˡ-  tail (v  ρˡ)
    v∘ρˡ- x = begin
        v- (ρˡ- x)                                        ≡⟨⟩
        v (punchIn (head ρˡ) (punchOut {A} {head ρˡ} _))  ≡⟨ ≡.cong v (punchIn-punchOut _)         v (ρˡ (punchIn (ρʳ (ρˡ zero)) x))                 ≡⟨ ≡.cong (λ h  v (ρˡ (punchIn h x))) (inverseʳ ρ)         v (ρˡ (punchIn zero x))                           ≡⟨⟩
        v (ρˡ (suc x))                                    ≡⟨⟩
        tail (v  ρˡ) x                                       preimage- : [preimageρʳS]-  preimage ρʳ- S-
    preimage- x = begin
        [preimageρʳS]- x                      ≡⟨⟩
        removeAt (preimage ρʳ S) (head ρˡ) x  ≡⟨⟩
        S (ρʳ (punchIn (head ρˡ) x))          ≡⟨ ≡.cong S (punchIn-permute ρ (head ρˡ) x)  
        S (punchIn (ρʳ (head ρˡ)) (ρʳ- x))    ≡⟨⟩
        S (punchIn (ρʳ (ρˡ zero)) (ρʳ- x))    ≡⟨ ≡.cong (λ h  S (punchIn h (ρʳ- x))) (inverseʳ ρ)  
        S (punchIn zero (ρʳ- x))              ≡⟨⟩ 
        S (suc (ρʳ- x))                       ≡⟨⟩
        preimage ρʳ- S- x                     push-with : {A B : }  (e : Value)  Vector Value A  (Fin A  Fin B)  Vector Value B
push-with e v f = merge-with e v  preimage f  ⁅_⁆

push : {A B : }  Vector Value A  (Fin A  Fin B)  Vector Value B
push = push-with U

mutual
  merge-preimage
      : {A B : }
        (f : Fin A  Fin B)
       (v : Vector Value A)
        (S : Subset B)
       merge v (preimage f S)  merge (push v f) S
  merge-preimage {zero} {zero} f v S = merge-[]₂
  merge-preimage {zero} {suc B} f v S = begin
      merge v (preimage f S)  ≡⟨ merge-[] v (preimage f S)       U                       ≡⟨ merge-with-U U S       merge (λ _  U) S       ≡⟨ merge-cong₁ (λ x  ≡.sym (merge-[] v ( x   f))) S       merge (push v f) S          where
      open ≡.≡-Reasoning
  merge-preimage {suc A} {zero} f v S with ()  f zero
  merge-preimage {suc A} {suc B} f v S with insert-f0-0 f
  ... | ρ , ρf0≡0 = begin
          merge v (preimage f S)                                    ≡⟨ merge-cong₂ v (preimage-cong₁ (λ x  inverseˡ ρ {f x}) S)           merge v (preimage (ρˡ  ρʳ  f) S)                        ≡⟨⟩
          merge v (preimage (ρʳ  f) (preimage ρˡ S))               ≡⟨ merge-preimage-f0≡0 (ρʳ  f) ρf0≡0 v (preimage ρˡ S)           merge (merge v  preimage (ρʳ  f)  ⁅_⁆) (preimage ρˡ S) ≡⟨ merge-preimage-ρ (flip ρ) (merge v  preimage (ρʳ  f)  ⁅_⁆) S           merge (merge v  preimage (ρʳ  f)  ⁅_⁆  ρʳ) S          ≡⟨ merge-cong₁ (merge-cong₂ v  preimage-cong₂ (ρʳ  f)  ⁅⁆∘ρ ρ) S           merge (merge v  preimage (ρʳ  f)  preimage ρˡ  ⁅_⁆) S ≡⟨⟩
          merge (merge v  preimage (ρˡ  ρʳ  f)  ⁅_⁆) S          ≡⟨ merge-cong₁ (merge-cong₂ v  preimage-cong₁ (λ y  inverseˡ ρ {f y})  ⁅_⁆) S           merge (merge v  preimage f  ⁅_⁆) S                              where
          open ≡.≡-Reasoning
          ρʳ ρˡ : Fin (ℕ.suc B)  Fin (ℕ.suc B)
          ρʳ = ρ ⟨$⟩ʳ_
          ρˡ = ρ ⟨$⟩ˡ_

  merge-preimage-f0≡0
      : {A B : }
        (f : Fin (ℕ.suc A)  Fin (ℕ.suc B))
       f Fin.zero  Fin.zero
       (v : Vector Value (ℕ.suc A))
        (S : Subset (ℕ.suc B))
       merge v (preimage f S)  merge (merge v  preimage f  ⁅_⁆) S
  merge-preimage-f0≡0 {A} {B} f f0≡0 v S
    using S0 , S-  head S , tail S
    using v0 , v-  head v , tail v
    using _  , f-  head f , tail f
      = begin
            merge v f⁻¹[S]                      ≡⟨ merge-suc v f⁻¹[S]             merge-with v0? v- f⁻¹[S]-           ≡⟨ join-merge v0? v- f⁻¹[S]-             join v0? (merge v- f⁻¹[S]-)         ≡⟨ ≡.cong (join v0?) (merge-preimage f- v- S)             join v0? (merge f[v-] S)            ≡⟨ join-merge v0? f[v-] S             merge-with v0? f[v-] S              ≡⟨ merge-with-suc v0? f[v-] S             merge-with v0?+[f[v-]0?] f[v-]- S-  ≡⟨ ≡.cong (λ h  merge-with h f[v-]- S-) ≡f[v]0             merge-with f[v]0? f[v-]- S-         ≡⟨ merge-with-cong f[v]0? ≡f[v]- S-             merge-with f[v]0? f[v]- S-          ≡⟨ merge-suc f[v] S             merge f[v] S                                  where
            f⁻¹[S] : Subset (suc A)
            f⁻¹[S] = preimage f S
            f⁻¹[S]- : Subset A
            f⁻¹[S]- = tail f⁻¹[S]
            f⁻¹[S]0 : Bool
            f⁻¹[S]0 = head f⁻¹[S]
            f[v] : Vector Value (suc B)
            f[v] = push v f
            f[v]- : Vector Value B
            f[v]- = tail f[v]
            f[v]0 : Value
            f[v]0 = head f[v]
            f[v-] : Vector Value (suc B)
            f[v-] = push v- f-
            f[v-]- : Vector Value B
            f[v-]- = tail f[v-]
            f[v-]0 : Value
            f[v-]0 = head f[v-]
            f⁻¹⁅0⁆ : Subset (suc A)
            f⁻¹⁅0⁆ = preimage f  zero             f⁻¹⁅0⁆- : Subset A
            f⁻¹⁅0⁆- = tail f⁻¹⁅0⁆
            v0? v0?+[f[v-]0?] f[v]0? : Value
            v0? = v0 when f⁻¹[S]0
            v0?+[f[v-]0?] = (if S0 then join v0? f[v-]0 else v0?)
            f[v]0? = f[v]0 when S0
            open ≡.≡-Reasoning
            ≡f[v]0 : v0?+[f[v-]0?]  f[v]0?
            ≡f[v]0 rewrite f0≡0 with S0
            ... | true = begin
                      join v0 (merge v- f⁻¹⁅0⁆-)  ≡⟨ join-merge v0 v- (tail (preimage f  zero ))                       merge-with v0 v- f⁻¹⁅0⁆-    ≡⟨ ≡.cong (λ h  merge-with (v0 when  zero  h) v- f⁻¹⁅0⁆-) f0≡0                       merge-with v0?′ v- f⁻¹⁅0⁆-  ≡⟨ merge-suc v (preimage f  zero )                       merge v f⁻¹⁅0⁆                                  where
                      v0?′ : Value
                      v0?′ = v0 when head f⁻¹⁅0⁆
            ... | false = ≡.refl
            ≡f[v]- : f[v-]-  f[v]-
            ≡f[v]- x = begin
                push v- f- (suc x)            ≡⟨ ≡.cong (λ h  merge-with (v0 when  suc x  h) v- (preimage f-  suc x )) f0≡0                 push-with v0?′ v- f- (suc x)  ≡⟨ merge-suc v (preimage f  suc x )                 push v f (suc x)                            where
                v0?′ : Value
                v0?′ = v0 when head (preimage f  suc x )