aboutsummaryrefslogtreecommitdiff
path: root/Data/Circuit/Value.agda
blob: 512a62275249ba4f77225dbbe25c5c5ca4d58ef4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
{-# OPTIONS --without-K --safe #-}

module Data.Circuit.Value where

open import Relation.Binary.Lattice.Bundles using (BoundedJoinSemilattice)
open import Data.Product.Base using (_×_; _,_)
open import Data.String.Base using (String)
open import Level using (0)
open import Relation.Binary.PropositionalEquality as  using (_≡_)

data Value : Set where
  U T F X : Value

data ≤-Value : Value  Value  Set where
    v≤v : {v : Value}  ≤-Value v v
    U≤T : ≤-Value U T
    U≤F : ≤-Value U F
    U≤X : ≤-Value U X
    T≤X : ≤-Value T X
    F≤X : ≤-Value F X

≤-reflexive : {x y : Value}  x  y  ≤-Value x y
≤-reflexive ≡.refl = v≤v

≤-transitive : {i j k : Value}  ≤-Value i j  ≤-Value j k  ≤-Value i k
≤-transitive v≤v y = y
≤-transitive x v≤v = x
≤-transitive U≤T T≤X = U≤X
≤-transitive U≤F F≤X = U≤X

≤-antisymmetric : {i j : Value}  ≤-Value i j  ≤-Value j i  i  j
≤-antisymmetric v≤v _ = ≡.refl

showValue : Value  String
showValue U = "U"
showValue T = "T"
showValue F = "F"
showValue X = "X"

join : Value  Value  Value
join U y = y
join x U = x
join T T = T
join T F = X
join F T = X
join F F = F
join X _ = X
join _ X = X

≤-supremum
    : (x y : Value)
     ≤-Value x (join x y)
    × ≤-Value y (join x y)
    × ((z : Value)  ≤-Value x z  ≤-Value y z  ≤-Value (join x y) z)
≤-supremum U U = v≤v , v≤v , λ _ U≤z _  U≤z
≤-supremum U T = U≤T , v≤v , λ { z x≤z y≤z  y≤z }
≤-supremum U F = U≤F , v≤v , λ { z x≤z y≤z  y≤z }
≤-supremum U X = U≤X , v≤v , λ { z x≤z y≤z  y≤z }
≤-supremum T U = v≤v , U≤T , λ { z x≤z y≤z  x≤z }
≤-supremum T T = v≤v , v≤v , λ { z x≤z y≤z  x≤z }
≤-supremum T F = T≤X , F≤X , λ { X x≤z y≤z  v≤v }
≤-supremum T X = T≤X , v≤v , λ { z x≤z y≤z  y≤z }
≤-supremum F U = v≤v , U≤F , λ { z x≤z y≤z  x≤z }
≤-supremum F T = F≤X , T≤X , λ { X x≤z y≤z  v≤v }
≤-supremum F F = v≤v , v≤v , λ { z x≤z y≤z  x≤z }
≤-supremum F X = F≤X , v≤v , λ { z x≤z y≤z  y≤z }
≤-supremum X U = v≤v , U≤X , λ { z x≤z y≤z  x≤z }
≤-supremum X T = v≤v , T≤X , λ { z x≤z y≤z  x≤z }
≤-supremum X F = v≤v , F≤X , λ { z x≤z y≤z  x≤z }
≤-supremum X X = v≤v , v≤v , λ { z x≤z y≤z  x≤z }

join-comm : (x y : Value)  join x y  join y x
join-comm U U = ≡.refl
join-comm U T = ≡.refl
join-comm U F = ≡.refl
join-comm U X = ≡.refl
join-comm T U = ≡.refl
join-comm T T = ≡.refl
join-comm T F = ≡.refl
join-comm T X = ≡.refl
join-comm F U = ≡.refl
join-comm F T = ≡.refl
join-comm F F = ≡.refl
join-comm F X = ≡.refl
join-comm X U = ≡.refl
join-comm X T = ≡.refl
join-comm X F = ≡.refl
join-comm X X = ≡.refl

join-assoc : (x y z : Value)  join (join x y) z  join x (join y z)
join-assoc U y z = ≡.refl
join-assoc T U z = ≡.refl
join-assoc T T U = ≡.refl
join-assoc T T T = ≡.refl
join-assoc T T F = ≡.refl
join-assoc T T X = ≡.refl
join-assoc T F U = ≡.refl
join-assoc T F T = ≡.refl
join-assoc T F F = ≡.refl
join-assoc T F X = ≡.refl
join-assoc T X U = ≡.refl
join-assoc T X T = ≡.refl
join-assoc T X F = ≡.refl
join-assoc T X X = ≡.refl
join-assoc F U z = ≡.refl
join-assoc F T U = ≡.refl
join-assoc F T T = ≡.refl
join-assoc F T F = ≡.refl
join-assoc F T X = ≡.refl
join-assoc F F U = ≡.refl
join-assoc F F T = ≡.refl
join-assoc F F F = ≡.refl
join-assoc F F X = ≡.refl
join-assoc F X U = ≡.refl
join-assoc F X T = ≡.refl
join-assoc F X F = ≡.refl
join-assoc F X X = ≡.refl
join-assoc X U z = ≡.refl
join-assoc X T U = ≡.refl
join-assoc X T T = ≡.refl
join-assoc X T F = ≡.refl
join-assoc X T X = ≡.refl
join-assoc X F U = ≡.refl
join-assoc X F T = ≡.refl
join-assoc X F F = ≡.refl
join-assoc X F X = ≡.refl
join-assoc X X U = ≡.refl
join-assoc X X T = ≡.refl
join-assoc X X F = ≡.refl
join-assoc X X X = ≡.refl

ValueLattice : BoundedJoinSemilattice 0 0 0ℓ
ValueLattice = record
    { Carrier = Value
    ; _≈_ = _≡_
    ; _≤_ = ≤-Value
    ; _∨_ = join
    ;  = U
    ; isBoundedJoinSemilattice = record
        { isJoinSemilattice = record
            { isPartialOrder = record 
                { isPreorder = record
                    { isEquivalence = ≡.isEquivalence
                    ; reflexive = ≤-reflexive
                    ; trans = ≤-transitive
                    }
                ; antisym = ≤-antisymmetric
                }
            ; supremum = ≤-supremum
            }
        ; minimum = λ where
            U  v≤v
            T  U≤T
            F  U≤F
            X  U≤X
        }
    }