1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
|
{-# OPTIONS --without-K --safe #-}
module Data.Circuit.Value where
open import Relation.Binary.Lattice.Bundles using (BoundedJoinSemilattice)
open import Data.Product.Base using (_×_; _,_)
open import Data.String.Base using (String)
open import Level using (0ℓ)
open import Relation.Binary.PropositionalEquality as ≡ using (_≡_)
data Value : Set where
U T F X : Value
data ≤-Value : Value → Value → Set where
v≤v : {v : Value} → ≤-Value v v
U≤T : ≤-Value U T
U≤F : ≤-Value U F
U≤X : ≤-Value U X
T≤X : ≤-Value T X
F≤X : ≤-Value F X
≤-reflexive : {x y : Value} → x ≡ y → ≤-Value x y
≤-reflexive ≡.refl = v≤v
≤-transitive : {i j k : Value} → ≤-Value i j → ≤-Value j k → ≤-Value i k
≤-transitive v≤v y = y
≤-transitive x v≤v = x
≤-transitive U≤T T≤X = U≤X
≤-transitive U≤F F≤X = U≤X
≤-antisymmetric : {i j : Value} → ≤-Value i j → ≤-Value j i → i ≡ j
≤-antisymmetric v≤v _ = ≡.refl
showValue : Value → String
showValue U = "U"
showValue T = "T"
showValue F = "F"
showValue X = "X"
join : Value → Value → Value
join U y = y
join x U = x
join T T = T
join T F = X
join F T = X
join F F = F
join X _ = X
join _ X = X
≤-supremum
: (x y : Value)
→ ≤-Value x (join x y)
× ≤-Value y (join x y)
× ((z : Value) → ≤-Value x z → ≤-Value y z → ≤-Value (join x y) z)
≤-supremum U U = v≤v , v≤v , λ _ U≤z _ → U≤z
≤-supremum U T = U≤T , v≤v , λ { z x≤z y≤z → y≤z }
≤-supremum U F = U≤F , v≤v , λ { z x≤z y≤z → y≤z }
≤-supremum U X = U≤X , v≤v , λ { z x≤z y≤z → y≤z }
≤-supremum T U = v≤v , U≤T , λ { z x≤z y≤z → x≤z }
≤-supremum T T = v≤v , v≤v , λ { z x≤z y≤z → x≤z }
≤-supremum T F = T≤X , F≤X , λ { X x≤z y≤z → v≤v }
≤-supremum T X = T≤X , v≤v , λ { z x≤z y≤z → y≤z }
≤-supremum F U = v≤v , U≤F , λ { z x≤z y≤z → x≤z }
≤-supremum F T = F≤X , T≤X , λ { X x≤z y≤z → v≤v }
≤-supremum F F = v≤v , v≤v , λ { z x≤z y≤z → x≤z }
≤-supremum F X = F≤X , v≤v , λ { z x≤z y≤z → y≤z }
≤-supremum X U = v≤v , U≤X , λ { z x≤z y≤z → x≤z }
≤-supremum X T = v≤v , T≤X , λ { z x≤z y≤z → x≤z }
≤-supremum X F = v≤v , F≤X , λ { z x≤z y≤z → x≤z }
≤-supremum X X = v≤v , v≤v , λ { z x≤z y≤z → x≤z }
join-comm : (x y : Value) → join x y ≡ join y x
join-comm U U = ≡.refl
join-comm U T = ≡.refl
join-comm U F = ≡.refl
join-comm U X = ≡.refl
join-comm T U = ≡.refl
join-comm T T = ≡.refl
join-comm T F = ≡.refl
join-comm T X = ≡.refl
join-comm F U = ≡.refl
join-comm F T = ≡.refl
join-comm F F = ≡.refl
join-comm F X = ≡.refl
join-comm X U = ≡.refl
join-comm X T = ≡.refl
join-comm X F = ≡.refl
join-comm X X = ≡.refl
join-assoc : (x y z : Value) → join (join x y) z ≡ join x (join y z)
join-assoc U y z = ≡.refl
join-assoc T U z = ≡.refl
join-assoc T T U = ≡.refl
join-assoc T T T = ≡.refl
join-assoc T T F = ≡.refl
join-assoc T T X = ≡.refl
join-assoc T F U = ≡.refl
join-assoc T F T = ≡.refl
join-assoc T F F = ≡.refl
join-assoc T F X = ≡.refl
join-assoc T X U = ≡.refl
join-assoc T X T = ≡.refl
join-assoc T X F = ≡.refl
join-assoc T X X = ≡.refl
join-assoc F U z = ≡.refl
join-assoc F T U = ≡.refl
join-assoc F T T = ≡.refl
join-assoc F T F = ≡.refl
join-assoc F T X = ≡.refl
join-assoc F F U = ≡.refl
join-assoc F F T = ≡.refl
join-assoc F F F = ≡.refl
join-assoc F F X = ≡.refl
join-assoc F X U = ≡.refl
join-assoc F X T = ≡.refl
join-assoc F X F = ≡.refl
join-assoc F X X = ≡.refl
join-assoc X U z = ≡.refl
join-assoc X T U = ≡.refl
join-assoc X T T = ≡.refl
join-assoc X T F = ≡.refl
join-assoc X T X = ≡.refl
join-assoc X F U = ≡.refl
join-assoc X F T = ≡.refl
join-assoc X F F = ≡.refl
join-assoc X F X = ≡.refl
join-assoc X X U = ≡.refl
join-assoc X X T = ≡.refl
join-assoc X X F = ≡.refl
join-assoc X X X = ≡.refl
ValueLattice : BoundedJoinSemilattice 0ℓ 0ℓ 0ℓ
ValueLattice = record
{ Carrier = Value
; _≈_ = _≡_
; _≤_ = ≤-Value
; _∨_ = join
; ⊥ = U
; isBoundedJoinSemilattice = record
{ isJoinSemilattice = record
{ isPartialOrder = record
{ isPreorder = record
{ isEquivalence = ≡.isEquivalence
; reflexive = ≤-reflexive
; trans = ≤-transitive
}
; antisym = ≤-antisymmetric
}
; supremum = ≤-supremum
}
; minimum = λ where
U → v≤v
T → U≤T
F → U≤F
X → U≤X
}
}
|